
www.manaraa.com

Agile Software Development Model

For

 Embedded Systems Development Environment

المدمجه النظم تطوير بيئة في السريع البرمجيات تطوير أنموذج

Student: Qais Saleh Ibrahim Al-mehmes

Supervisor: Dr.Akram Othman Al-Mashaykhi

A Thesis Submitted in Partial Fulfilment of Requirement for the master

Degree of Master Science in Computer Science

Amman Arab University

Faculty of Computer Science and Information

2015

Authorization Statement

www.manaraa.com

II

www.manaraa.com

III

Resolution of Examining Committee

www.manaraa.com

IV

Acknowledgments

In the name of Allah, the most merciful, the most compassionate all praise be

to Allah, the Lord of the worlds; and prayers and peace be upon Mohammed,

His servant and messenger.

Firstly, I want to express my deepest gratitude to my supervisor Assoc.

prof.Dr Akram Othman for his guidance and confidence through the

development of my thesis. Not only about the period preparation of the thesis,

but also throughout our studies as he is always encouraged me to do my best.

I want to thank all my committee Assist. Prof .Dr. Fayez Al-shrouf, Assoc.

Prof. Dr. Haiel Hussien, Assoc. Prof. Dr. Akram Al-Mshaikhi, for their

guidance, advice, criticism, encouragements and insight throughout the

studies in computer science

At last, special thanks to my wife kids and frinends supporting,and

encouraging me during my work

www.manaraa.com

V

Dedication

 I dedicate this effort to my family. They have given me the drive and ability

to tackle any task with enthusiasm and determination; without their

encouragement and support this research would not have been made possible.

I dedicate this work, also, to the spirit of my father and my mother , My thanks

and appreciation to the Ministry of Communications and Iraqi Cultural

Commission in Amman and all my friends who always encouraged me.

www.manaraa.com

VI

Contents

Resolution of the Examination Committee .. III

Acknowledgments .. IV

Dedication .. V

List of tables .. IX

Table of figures ... IX

Abstract .. X

Abstract Arabic ... XI

1 Chapter One .. 1

1.1 Software Procedure Prototypes .. 2

1.2 Sex Models ... 3

1.2.1 The Waterfall Model ... 4

1.2.2 Iterative Development .. 5

1.2.3 V-Shaped Prototype .. 6

1.2.4 Spiral Model ... 8

1.2.5 Extreme Programming .. 9

1.2.6 Aspect-oriented and Agile .. 9

1.3 Embedded Systems .. 11

1.3.1 Real-Time or Present Operational Systems 12

1.4 Problem Statement ... 15

1.5 Importance of This Research ... 16

1.6 Goals and Objectives .. 16

1.7 Methodology of the Proposed Solution ... 17

2 Chapter Two ... 18

Literature Review ... 18

2.1 Introduction .. 18

2.2 Literature Review ... 19

www.manaraa.com

VII

2.3 Conclusion .. 37

3 Chapter Three ... 39

Agile Software Development and Embedded Systems in Large Concept ... 39

3.1 Introduction .. 39

3.2 General Concept of Embedded Systems .. 40

3.2.1 Fundamental Ideas for Component-based Embedded Systems

 41

3.3 Agile Approaches ... 43

3.4 Embedded software growth Challenges ... 45

4 Chapters Four .. 50

Agile and Embedded Systems .. 50

4.1 Embedded Systems Characteristics' ... 50

4.2 How do Agile Methods Fit with Embedded Systems? 55

4.2.1 Objective Proof to Ensure That the Software Works

Appropriately .. 59

(b) User Documentation ... 60

Agile aspect benefit for embedded systems: neutral 60

Agile aspect benefit for embedded systems: beneficial 62

Agile aspect benefit for embedded systems: unbeneficial 64

Agile aspect benefit for embedded systems: beneficial 66

Agile aspect benefit for embedded systems: beneficial 68

5 Chapter five ... 69

An Agile Development Methodology Applied to Embedded Control

Software under Stringent Hardware Constraints .. 69

5.1 Background .. 69

5.2 A Brief Look at the Agile Methods and Patterns 71

5.2.1 Extreme Programming .. 72

www.manaraa.com

VIII

5.2.2 Scrum .. 73

5.2.3 Patterns for Agile Software Development 74

5.3 Proposed Development Methodology .. 76

5.3.1 System Platform Processes Group .. 77

5.3.2 Product Development Processes Group 78

5.3.3 Product Management Processes Group 79

5.3.4 Roles and Responsibilities .. 80

5.3.5 Processes Lifecycle ... 82

6 Chapters Six .. 84

Discussions and Conclusions .. 84

6.1 Discussion .. 84

6.2 Future Work and Recommendations .. 87

7 References ... 88

www.manaraa.com

IX

 List of tables

Table 1-1: Differences between the Six Models .. 10

Table of figures

Figure 1-1: waterfall prototype (Munassar & Govardhan, 2010)................... 5

Figure 1-2: Iterative Growth (Verma et. al., 2014) .. 6

Figure 1-3: V-Shaped Life Cycle Model (Thomas, et. al., 2014) 7

Figure 1-4: Spiral Model of the Software Procedure (Sommerville, 2014) ... 8

Figure 1-5: The XP Release Loop (Verma, et. al., 2014) 9

www.manaraa.com

X

Abstract

Agile Software Development Model

 for

Embedded Systems Development Environment

By: Qais Saleh Ibrahim Al-mehmes

Supervisor: Dr.Akram Othman

www.manaraa.com

XI

 الملخص

 أنموذج تطوير البرمجيات السريع في بيئة تطوير النظم المدمجه

 صميالطالب: قيس صالح ابراهيم المح

 المشرف: د.أكرم عثمان

. اتيتنوع ويتزايد الانتشار والتطبيق المدمجة، ممجة، النظ: الطرق الرشيقة، البرمجيات المدالكلمات المفتاحية

www.manaraa.com

1

1 Chapter One

Introduction and research framework

No one can refute the significance of computer in our life, particularly in the

contemporary period. Actually, computer has developed crucial in today's

existence as it is utilized in countless arenas of life such as business,

medication, trade, teaching and even farming. It has developed a significant

component in the manufacturing and skill of progressive in addition to

emerging countries. Currently, societies become more reliant on computer in

everything therefore of computer machinery. Computer is deliberated as time-

saving equipment and its development aids in performing multifaceted,

extended, recurrent procedures in a very small period with a great speed.

Additionally to consuming computer for effort, persons utilize it for

entertaining and amusement.

 Strikingly, the figure of firms that create software programs for the drive of

easing mechanism of workplaces, managements, banks, etc., has enlarged

lately which marks in the trouble of numbering such firms. During the

preceding forty years, software has been industrialized from an instrument

utilized for examining info or resolving a problem to an invention in itself.

Though, the initial programming phases have shaped a lot of problems making

software and problem to software growth chiefly those depending on

computers. Software contains papers and programs that comprise a gathering

that has been recognized to be a share of software engineering processes.

Furthermore, the goal of software engineering is to generate an appropriate

www.manaraa.com

2

effort that concepts databases of great excellence (Caudrado,

Canovaslzqierdo, & Molina, 2014).

1.1 Software Procedure Prototypes

A software procedure prototype is an intellectual picture of a procedure. It

depicts an account of a procedure from some specific viewpoint as:

1. Specification.

2. Design.

3. Validation.

4. Evolution.

Common Software Procedure Prototypes are:

1. Waterfall model: Distinct and discrete stages of requirement and

development.

2. Prototype model.

3. Rapid application development model (RAD).

4. Evolutionary development: Description, expansion and authentication

are inserted.

5. Incremental model.

6. Iterative model.

7. Spiral model.

8. Component-based software engineering: The structure is gathered from

prevailing modules.

www.manaraa.com

3

There are numerous alternatives of these prototypes e.g. official growth where

a waterfall-like procedure is utilized, but the requirement is official that is

sophisticated through numerous phases to an implementable scheme

(Sommerville, 2004).

1.2 Sex Models

A Software design procedure model is a nonfigurative depiction to label the

procedure from a specific viewpoint. There are statistics of common models

for software procedures, such as: Evolutionary development, Waterfall model,

Reuse based development, and Formal systems development etc. This

investigation will sight the subsequent five models:

1. Waterfall model

2. Iteration model

3. V-shaped model

4. Spiral model

5. Extreme model

6. Aspect-oriented and Agile model

These models are selected since their types agree to maximum software

expansion databases.

www.manaraa.com

4

1.2.1 The Waterfall Model

The waterfall prototype is the traditional prototypical of software engineering.

This prototype is one of the first prototypes and is extensively utilized in

administration schemes and in numerous main corporations. As this prototype

highlights preparation in initial phases, it safeguards design faults before they

grow. Furthermore, its concentrated text and preparation create it work fine

for schemes in which feature regulation is a captain fear.

The wholesome waterfall lifespan contains of numerous non-overlapping

phases, as exposed in the succeeding figure. The prototype instigates with

founding system necessities and software requests and endures with

architectural strategy, coding, comprehensive design, maintenance and

(Munassar & Govardhan, 2010).

The waterfall way does not forbid recurring to a previous stage, for instance,

recurring from the plan stage to the necessities stage. Though, this includes

expensive revise. Each finished phase needs official appraisal and wide

certification growth. Consequently, mistakes done in the necessities stage are

costly to spot on later.

As the real growth originates late in the procedure, one does not get outcomes

for a protracted time. This postponement can be disturbing to organization and

clients. Numerous persons also think that the quantity of papers is extreme

and strict.

Even though the waterfall model has its faintness, it is educational since it

highlights essential phases of project growth. Albeit one does not relate to this

prototype, he must contemplate each of these phases and its association to his

personal task.

www.manaraa.com

5

Figure 1-1: Waterfall prototype (Munassar & Govardhan, 2010)

1.2.2 Iterative Development

The difficulties with the Waterfall prototype shaped a request for a novel

technique of emerging systems which could deliver quicker consequences,

needs fewer straightforward data and offer better tractability. With Iterative

Growth the scheme is distributed into minor parts. This lets the growth team

to establish consequences previous on in the procedure and get valued

response from scheme operators a lot, every repetition is really a mini-

Waterfall procedure with the response from one stage offering dynamic info

for the strategy of the following stage. In a difference of this prototype, the

software products, which are made at the culmination of every phase (or

sequence of phases), can go into creation instantaneously as incremental

discharges (Verma, Bansal, & Pandey, 2014).

www.manaraa.com

6

Figure 1-2: Iterative Growth (Verma et. al., 2014)

1.2.3 V-Shaped Prototype

Just like the waterfall prototype, the V-Shaped lifespan is a consecutive trail

of performance of procedures. Each stage requisite to be accomplished before

the subsequent stage instigates. Testing is highlighted in this prototype extra

than the waterfall prototype. The difficult measures are industrialized initially

in the lifespan in advance any coding is finished, through every one of the

stages previous operation. Necessities instigate the lifespan prototype just like

the waterfall prototype. Beforehand growth is underway; a scheme test

strategy is shaped. The examination strategy emphases on gathering the

functionality stated in necessities meeting.

www.manaraa.com

7

The complex design stage emphases on system building and planning. An

incorporation test plan is shaped in this stage with the intention of testing the

bits of the software systems capacity to work organized. Though, the low-

level strategy stage lies where the real software modules are intended, and

component examinations are shaped in this stage also. The application stage

is, once more, where all coding is done. When coding is done, the track of

implementation endures up the exact lateral of the V where the exam strategies

industrialized previous are currently put to utilize (Thomas, Adam, Hassan, &

Blostien, 2014).

Figure 1-3: V-Shaped Life Cycle Model (Thomas, et. al., 2014)

www.manaraa.com

8

1.2.4 Spiral Model

The twisting model is analogous to the incremental prototype, with more

stresses positioned on risk study. The twisting model has four stages:

Preparation, Risk Study, Manufacturing and Assessment. A software project

recurrently permits through these stages in repetitions (called Twists in this

model). The starting point twisting, preliminary in the preparation phase,

necessities is collected and danger is measured. Each following twisting

builds on the starting point spiral. Necessities are collected during the

preparation stage. In the risk examination stage, a procedure is assumed to

classify risk and alternative explanations. An example is shaped at the

conclusion of the risk study stage. Software is shaped in the manufacturing

stage, along with analysis at the end of the stage. The evaluation stage permits

the client to assess the production of the scheme to date beforehand the

scheme lasts to the following twisting. In the twisting model, the angular

module signifies development, and the range of the twisting characterizes cost

(Sommerville, 2004).

Figure 1-4: Spiral Model of the Software Procedure (Sommerville, 2014)

www.manaraa.com

9

1.2.5 Extreme Programming

A method to growth, founded on the growth and distribution of very minor

increases of functionality. It depends on continuous code development, user

participation in the growth team and couple wise encoding. It can be

problematic to save the attention of consumers who are tangled in the

procedure. Team associates may be unfitted to the penetrating participation

that typifies supple approaches. Listing variations can be problematic where

there are manifold participants. Upholding straightforwardness needs

additional work. Agreements may be a problematic as with other methods to

iterative growth (Verma, Bansal, & Pandey, 2014).

Figure 1-5: The XP Release Loop (Verma, et. al., 2014)

1.2.6 Aspect-oriented and Agile

Aspect-oriented software design syndicates useful opinions of software (for

instance use cases) with object or module opinions (for example class

drawings). At dissimilar phases of the software lifespan, either a useful or

article based opinion (or together) can be utilized, according to any which is

www.manaraa.com

10

more suitable at the instant. Largely speaking, a useful opinion is finest for

necessities collecting, as operators bear in mind what the system does instead

of how it is controlled. Both purposeful and constituent opinions are

significant during system construction. Thorough plan, coding, and

component analysis incline to emphasis on constituent opinions so that the

software can be built in wieldy bits. Through incorporation, both module and

purposeful opinions are vital, concluding in reception tests’ emphasis on

purpose. Both useful and module views are significant throughout upkeep, as

the functionality of novel topographies or injections to current structures is

measured, and influence examination and reversion challenging are smeared

to modules. Aspect-oriented software design not only enhances an organized

lookout again into component-based schemes, but also delivers a higher-level

useful image. The useful “features” frequently crosscut organized procedures

in addition to modules. Aspect-oriented programming depends on an outline

of “link points”, stipulations of diverse features that could be applied at the

join opinions, and information for which feature(s) to really use. A “feature

weaver” then supplements the simple or default functionality by joining in the

counseled performance at the junction points. Responsive software expansion

procedures are a modification of iterative procedures, in which repeatedly

altering necessities are acknowledged or even cheered. Fast repetitions retain

the system receptive to variations, and close interaction both amid consumers

and creators and amongst designer’s safeguards that the rising and

transforming system properly accounts for the variations. Test-driven

expansion safeguards that merely the smallest compulsory software is built,

that it is built properly, and that it rests precise during the course of constant

variations (West, Grant, Gerush, & Disilva, 2010).

www.manaraa.com

11

Table 1-1: Differences between the Six Models

Factors Waterfall Iterative Spiral V-shaped Extreme

programming

Agile

Project Cost Determined

During

planning

Set

during

project

Determined

During

planning

Determined

During

planning

Set During

project

Set During

project

Responsiveness

to environment

Planning

Only

At the

end of

Iteration

Planning

primarily

Planning Throughout Throughout

Probability of

Success

Low Medium Medium

Low

Medium High High

Completion

Date

Determined

During plan

Set

during

project

Partially

Variable

Set during

project

Set during

Project

Set during

project

1.3 Embedded Systems

Embedded coordination has turned out to be a buzz expression in the previous

five years, but embedded coordination and computers have been everywhere

for considerably extended than that. One only wants to look round to perceive

embedded systems ubiquitously: alarm clocks, cell phones, automobile

subsystems such as ABS, personal data assistants (PDAs) and cruise

regulator, etc. This segment takes an aspect at embedded systems, the subjects

and outfits tangled in their strategy, existing tendencies, and how they can

advantage from the investigation performed for this study (Baynes, et al.,

2001).

www.manaraa.com

12

1.3.1 Real-Time or Present Operational Systems

Real-Time Operational Systems (RTOS) are usually utilized in the growth,

productizing, and distribution of embedded systems. Contrasting the sphere

of common determination calculating, real-time organizations are typically

industrialized for a restricted amount of jobs and have dissimilar necessities

of their operational systems (Francia, 2001).This Segment first provides the

necessities of present operative systems, then breakdowns the interior of

RTOSs and clarifies them in part. This segment accomplishes with how the

emulator industrialized in this study would support in the assessment of

RTOSs.

1.3.1.1 Real-Time Operating Systems (RTOS): The Requirements

According to (Sha, et al., 2004), an efficient RTOS not only deals services

and mechanisms efficiently to perform real-time preparation and source

organization but also preserves its particular time and reserve depletion

foreseeable and responsible. A RTOS is answerable for proposing the

subsequent amenities to the customer programs that will execute on top of it.

The chief concern is that of preparation: a RTOS wants to propose the

customer a technique to plan his errands. The second duty is that of scheduling

upkeep: the RTOS wants to be accountable in both offering and upholding a

precise scheduling technique.

The third duty is to propose consumer errands the capability to do system

calls: the RTOS propose amenities to do specific responsibilities that the

customer would usually have to plug-in himself, but the RTOS has them

encompassed in its archive, and these organization calls have been augmented

for the hardware arrangement that the RTOS is executing on. The final

mechanism that the RTOS wants to deliver is a technique of

www.manaraa.com

13

allocating with interferes: the RTOS wants to propose an apparatus for usage

interrupts professionally, in a appropriate way, and with an higher bound on

the period it receipts to package those intrudes (Sha, et al., 2004).

There are numerous ideas that essential to be clear in any conversation of

RTOSs. The chief idea is that of prevention. Actual operational systems are

preventive and non- preventive. If a present operational system is

preventative, it means that an undertaking presently being executed by the

RTOS can be intermittent by additional job with an advanced importance or

an outside interrupt. The intermittent job’s state is protected, and this state will

be reinstated when it is execute again, letting it to endure along from the

similar theme that it was interjected. RTOSs that are non-preventive cannot

be disturbed. If a job is presently running when another job wants to run, that

additional task should postpone for the principal task to end running before it

can initiate to run (Stepner, Rajan, & Hui, 1999).

One more significant idea is that of firm real-time contrasted with lax real-

time. Firm real-time means a job always requisite to be accomplished by a

particular period. The reliability of the system intended with firm real-time

errands will be cooperated if such a limit is misused. An instance of this is the

message device from the arena of a profitable aircraft to the embedded system

supervising the wing blinders. If an aviator is impending in for touchdown,

and jerks up on his blinkers to gentle his decline, that conversation should

work — for if it doesn’t, the whole airplane has the likelihood of booming.

Lax real-time systems are whichever kind of system that is not a firm real-

time system, implicating that if a job is late, the system will endure to retain

running (Stepner, Rajan, & Hui, 1999).

www.manaraa.com

14

There are numerous changed kinds of job preparation for today’s real-time

operative systems to select from. There is the boundless round scheduler, that

is essentially though (1) loop that unceasingly runs a part of code. Doings

inside the loop are performed in order and as countless times as conceivable.

The following level of job preparation is that of the straightforward recurring

decision-making scheduler. In a straightforward recurring preparation

algorithm, the notion of the boundless ring is lengthy in that creators can

discrete the program to be performed into distinct responsibilities. These

errands perform in a normal arrangement in an enormously reiterating loop.

This sort of preparation is frequently named round-robin preparation. Similar

to the boundless loop, all of the responsibilities run as frequently as

imaginable. Time determined recurring preparation, the following level of job

preparation, fluctuates from elementary recurring in that rather than running

every of these responsibilities as frequently as imaginable, it familiarizes the

impression of a time interposes. This regulator awakens up the chief job in

line, and the moment that first job is over, the subsequent job starts. All of the

responsibilities in line should end before the following clock interrupt.

Subsequent the period determined recurring scheduler is the multi-rate

recurring decision-making scheduler. This is a growth of the stint determined

recurring scheduler in that it permits manifold times, so extended as greater

occurrence responsibilities part numerous of the base job’s incidence. This is

completed by introducing a job more than one period into the restraint or into

manifold restraints. The multi degree administrative for intervallic

responsibilities scheduler enhances the aptitude to have manifold times by

founding a clock that is the lowermost common manifold of all of the times

of all of the responsibilities. At every impulse of this

www.manaraa.com

15

clock, jobs can be prepared to perform. All of the exceeding preparation

procedures frequently tackle with intrudes by introducing responsibilities and

all of the before mentioned preparation procedures are non-preventive. A

multi degree decision-making with disturbs permits outside interrupts to halt

into present implementation and be repaired. The job intermittent is then

resumed when the intervene is completed. Lastly, the importance founded

preventative managerial scheduler is the identical as the multi degree

decision-making with interjects excluding that it lets not only interjects to

cessation into the present program, but responsibilities with greater

importance too (Kalinsky, 1999).

1.4 Problem Statement

The chief tricky statement is how responsive approaches would be used in the

expansion of embedded coordination, and what are their welfares, trials, and

boundaries.

The main research questions as following:

1. What the dissimilarity amongst software models (iterative

development, agile model, waterfall, V-Shaped, extreme program, spiral

model?)

2. What the embedded system (design issues, trend, real-time systems,

development tool?

3. How fit do agile approaches appropriate into embedded systems?

4. How do be relating agile approaches to embedded systems expansion?

5. What are the tests and policies that lead to effective embedded software

growth?

www.manaraa.com

16

6. How affect an agile expansion practice smeared to embedded device

Software under severe hardware limitations?

1.5 Importance of This Research

Embedded systems are extensively utilized in various parts, such as consumer

electronics, avionics, and medicinal apparatus’s, producing a substantial

influence on contemporary culture. As these systems occasionally deal

unswervingly with mortal lives, and necessitate a substantial level of

excellence, their growth would be theme to a hard procedure. In additional

viewpoint, agile approaches (or agile procedures) have been accepted by the

software engineering as a trivial, iterative, and cooperative method for

emerging software coordination. Though agile approaches do not appear to be

proper to embedded coordination, they have been positively utilized for

constructing such schemes. Though, there occurs no thorough and logical

impression of the usage of such approaches in the embedded organizations

area.

1.6 Goals and Objectives

The aim of this research is to acquiring the comprehension of the trials and

policies that leads to positive embedded software growth, furthermore

accepting how agile technique features relates to embedded coordination

software growth. The aim of this study is to discover the flaws of expending

agile approaches in embedded software expansion that will offer an improved

appearance and assumed the healthier conducts to evade tests if there are

countless hardware limitations.

www.manaraa.com

17

1.7 Methodology of the Proposed Solution

In this study, the way out of study problem will be resolved in two phases.

Phase number one is to describe the issue, and phase number two is the role

of this research.

Phase 1 (Defining the Problem): Proposal of An Study into Agile Approaches

in Embedded Systems Growth

Phase 2 (The Role): discovering the proposal of suggestions that aid to

surmount relating agile approaches to embedded systems growth.

Figure 1-6: Procedure of the Suggested Solution

The Contribution

Progress agile to

embedded system

 PROPOSALS FOR DO AGILE

APPROACHES APPROPRIATE TO

EMBEDDED SYSTEMS.

 PROPOSALS FOR RELATING AGILE

APPROACHES TO EMBEDDED

SYSTEMS GROWTH.

 PROPOSALS FOR TRIALS AND

POLICIES THAT LEAD TO

POSITIVE EMBEDDED

SOFTWARE GROWTH.

Defining the problem

Examination into Agile

Approaches in Embedded

Systems Growth

www.manaraa.com

18

2 Chapter Two

Literature Review

2.1 Introduction

The following is a literature review which I intend to use in my thesis. The

journals are well authenticated sources that are well referenced thus making

them ideal reference materials. Some of the characteristics I was looking at

while searching for the reference material is the ability to answer my research

questions. I have included a couple of journals that will give me information

on how embedded systems are designed, the current market trends and issues.

Some of the journals do have information on the benefits of using agile

methods in the development of agile systems and their possible limitation.

The difference between software models is also well articulated as well as

the application of agile methods in embedded system development. There is

also an article by (PWC, 2013) that talks about strategies that can be used in

developing successful embedded software. In addition, the articles choose

have more information of developing embedded software that can be used in

real times systems The researched articles gives me certainty that I will be

able to come up with a succinct literature review that will support the basis

of my research.

www.manaraa.com

19

2.2 Literature Review

Eklund, U., Olsson, H. H., & Strom, N. J. (2014). Industrial challenges of

scaling agile in mass-product embedded systems. (pp. 30-42). Springer

international publishing.

This paper explores the challenges available in scaling up agile software

practices and how companies can plan themselves to adopt such practices. The

authors note that there is a significant change in the embedded systems

industry which is brought about by the complex ever changing customer

requirements. (Eklund, Olsson, & Strom, 2014) are of the opinion that, in

order for companies to meet this changing customer demands and be

economically viable in the market, there is need to scale up agile methods in

embedded systems.

The researchers highlight some of the benefits of using agile methods and note

that the major reason for the wide adoption of these methods is their efficiency

in relaying products to the market at a much faster rate thus increasing the

company’s chances of meeting customer demands faster and easily. In

addition they state that companies use agile methods to increase frequency of

new products and features released besides improving the efficiency of their

software engineering.

The authors also discuss in detail some of the challenges of using agile

methods. One of the main challenges cited in the use of agile methods for

large scale software development is that companies often practice agile

methods in a way that is not compatible with the initial agile ideas and

therefore making it difficult to incorporate them in their normal ways of

working. The researchers further cite some of the characteristics that influence

the adoption of agile methods under strict hardware constrains as

www.manaraa.com

20

adopted from (Abrahamsson, Warsta, Siponen, & Ronkainen, 2003) as

follows; the use of detailed task specific information between teams making

documentation difficult, the difficulty in implementation of embedded

software because its development is mostly test driven ,there are also issues

with performance of the software in meeting targeted specifications and lastly

actualisation of the technology is difficult to ascertain as the software is

developed experimentally.

The researchers conclude that although companies might want to adopt agile

methods, up scaling them becomes a problem as the software developed only

affects subsystems and not the whole product.

 In addition prioritizing agile is made more difficult by the fact that there is

limited functionality on product specific introduced software. This journal

will be of importance to my research especially in literature review as it

highlights the benefits and challenges of adopting agile methods. The writers

have referenced widely thus making their work a credible citing source.

Chhya, A. S. (2008). A new process model for embedded systems control

for automotive industry. The proceedings of the 2008 International Arab

Conference on Information Technology, (pp. 16-18). Tunisia.

The researchers’ purpose was to come up with a software model that is

modified using the following three processes; Team software process, six

sigma and Personal Software process. They further tested the new software

process in an automotive embedded systems project which resulted in 70%

defects improvement. The authors are of the opinion that software’s quality,

efficiency and effectiveness are the major setbacks in companies. The authors

further note that there needs to combined efforts by teams in the

www.manaraa.com

21

development of software system to enhance coordination of the development

process. They do propose a systematic process that is easy to grasp by the

development teams for this to be effective. In addition, the authors suggest

that although software processes enhance efficient service delivery and

communication among the developers, customers and end users, the

developed software should be efficient and effective to the company as well

as reliable and of good quality to the chain members downstream.

The spiral model, PSP, TSP and sigma processes are described in their

research. According to(Chhya, 2008), in the development of a spiral model a

combination of features of the waterfall and prototyping model are used. They

further give a detailed process of coming up with the spiral model whereby

there is a detailed definition of the requirements of the new system followed

by the creation of a preliminary design which is then used to develop a first

prototype. After the first prototype development it is then evaluated for its

effectiveness and then the second prototype developed after defining the

requirements of this new prototype. If the customer feels that the prototype

has a higher risk the project is immediately terminated and this necessitates

development of another prototype using the results from the evaluation. This

process is repeated until the customer requirements are fully met to get the

final product which is tested for any errors before embarking on mass

production.

The authors also give a brief description of the PSP process which is an

individual process of software development for a defined activity. They state

that in order to ensure the quality of the software developed the individual has

to adhere to the standards and principles of PSP. This implies that the

individual has to conduct a baseline survey and have planning steps. This

www.manaraa.com

22

will help the developer have a quality product developed in relation to

available resources. The author’s further note that in this process the developer

needs to have a way of detecting any defects in the development process as

well as how to enhance the development capacity.

The authors do describe six sigma as an improvement tool where defects in a

product are easily identified and eliminated. This reduces any wastes therefore

making the process cost effective.

The authors do conclude that in an embedded control system the final product

quality is a factor of the quality of hardware, software and system controls as

a whole therefore putting emphasis on one part does not guarantee the quality

of the whole system. Therefore it’s paramount to use 'Modified Spiral model

using PSP, TSP and Six Sigma’, processes right from product development to

come up with a wholesome quality product.

The authors of this paper have given a detailed explanation of different

software methods before coming up with their proposed model which they

later test. This a good way of presenting their work and there it is a credible

reference source. The paper will be of paramount importance to my research

work as it gives an explanation and difference in software models and their

applicability.

www.manaraa.com

23

Francisco Assis M. do Nascimento, M. F. (2006). ModES: Embedded

Systems Design Methodology and Tools based on MDE. (pp. 67-76).

Brazil: 07 proceedings of the fourth international workshop on Model-

Based methodologies for pervasive and embedded software.

The researchers are of the opinion that the inefficiencies in the current existing

system designs are pushing for better embedded approaches to be adopted.

Their research maps out a meta-model that captures the processes

functionality and communication of the embedded systems right from

application to implementation. They present their approach using the features

of the ‘Eclipse Modelling Framework’ and actualise their development

through a real case. The researchers proposed model has a non-limited design

space making it possible for any changes to be incorporated during

implementation. The researchers go ahead and describe the methodology for

their design that consists of all the steps in software design; application,

mapping and implementation. They also test their tool in a real case study; in

an automated wheel chair; thus authenticating their design. Lastly they

compare their design with other MDE-based approaches thus making their

work unbiased. From past researches the authors conclude that most of the

works do not take into account the MDA principle of making the design space

unlimited so that specific software can be changed as it deems during

implementation. Their proposed new design model addresses this limitation.

The research can be generalised as it has taken into consideration past work

and done a good comparison. This paper is of value in my research in

explaining how agile methods can be used in developing embedded systems.

www.manaraa.com

24

Kopetz, H. (2000). Software Engineering for Real-Time: A Roadmap.

Austria: Technische Universitat Wien. . In Emerging Technologies and

Factory Automation, 1999. Proceedings. ETFA'99. 1999 7th IEEE

International Conference on (Vol. 2, pp. 1557-1565). IEEE.

The author of this paper is of the opinion that, with the current highly

depended applications, computer systems will replace mechanical and

hydraulic control because of their efficiency and cost effectiveness. The

author discusses in his paper the trends that will make companies shift their

systems into embedded systems. In addition he describes some of the

requirements that are supposed to be addressed by software developers to fast

track this massive shift. Some of the requirements that the author proposes

are; a good design that can be changed during implementation as well as

validating the software before up scaling to reduce on any risks which he gives

a detailed overview. The author further describes an ideal system component

as that which is time efficient and testable. In addition he proposes that

validating the software product is better done by evaluating the development

process as well as testing the final product thus making it simpler to validate

an independent product before it’s embedded in a system for mass production.

In conclusion, the writer is of the opinion that the changes in the software

industry will cause a shift in system validation by ensuring that individual

products are validated rather than processes alone. This journal will be used

in my research in getting more information on real time embedded systems

and the trends that are currently changing the industry.

www.manaraa.com

25

Goswami, A., & Bezboruah, T. a. (2009). Design of an Embedded System

or Monitoring and Controlling Temperature and Light. International

Journal of Electronics Engineering Research, 1(1), 27-36.

The authors of this paper come up with a description of an embedded system

design that controls temperature and intensity of light in a single system as

monitoring is done continuously in the process. The authors do appreciate that

for efficient and effective operation in engineering most companies are now

adopting embedded systems. The authors of this paper further come up with

a description of an embedded system design that controls temperature and

intensity of light in a single system. In this system they explain that

monitoring is done continuously in the process. The researchers do appreciate

that for efficient and effective operation in engineering most companies are

now adopting embedded systems. The authors motivation comes with the fact

that the proposed system will reduce a company’s cost in terms of energy

savings as the computers numbers used in the daily operations will be reduced.

In the development of their software the author’s emphasis is on the online

monitoring and controlling features of the software but do not discuss offline

analysis leaving this for future research.

Although the researchers give a detailed experiment of their processed system,

they do not take it to trial therefore the system is not actualised. The authors

may be biased in a way, in that they just need to promote their system but

these needs to be backed up by previous research. Further, they also do not

state the limitations of their proposed systems for example redundancy among

others. This paper will not form a major basis of my research but it will be

part of my bibliography in providing general knowledge about embedded

systems.

www.manaraa.com

26

Fernandes, J. M., & Machado, J. R. (2007). Teaching embedded systems

in systems engineering in software oriented computing degree. 37th

ASEE/IEEE frontiers in education research, (pp. 27-36).

The authors of this paper describe the topics that should be included in the

curriculum design Masters in software engineering. They are of the view that

embedded software design is important to be introduced in this curriculmn. In

addition they state that students whose computer degrees are software oriented

need to acquire effective skills in embedded systems engineering, so as to

increase their professional competencies. The authors also go ahead and give

a detailed definition of an embedded system.

 According to(Fernandes & Machado, 2007), an embedded system is ‘a

system developed to perform a specialized function by combining computer

hardware, software and other mechanical parts’. This system is developed to

be used in controlling systems like cars, planes, industrial systems among

others therefore it’s not a computer system rather it is a computerized system.

 The authors then further give a curriculum that can be adopted in delivering

a Masters in software engineering program. They conclude that it is important

for students to be taught embedded systems as currently the industry is moving

towards use of embedded systems in their operations because of the systems

efficiency and cost effectiveness. These researchers have made a wide

reference and internal consultation therefore it’s a credible source. Although

the paper discusses more of a curriculum in development, it will be useful in

my research especially in the definition of terms like embedded systems.

www.manaraa.com

27

Laanti, P. K. (2006). How to steer an Embedded Software project: Tactics

for scaling agile software process Models. IJAM, 9(1), 59-77.

The researchers’ major purpose is to investigate how to select an agile

software process for the development of a market driven embedded software

in the telecommunications industry. They propose a model selection frame

that can be used by developers basing their knowledge on the currently

available agile software process models like RUP, XP, ASD and FDD. They

do this by using real problem issues in the available software processes. They

are of the opinion that some problems in a project are as a result of the process

model used. The authors do find out that no single system can be a solution to

available problems. Therefore, the major aim of the authors is to present a

project manager with ways of choosing an agile software process to use in a

certain project depending on the available conditions and constraints and the

reasons as to why the proposed process will be effective. They do this from

literature reviews and their own practical experience. They propose that a

project manager can come up with an effective agile process to use by

evaluating the intended project, the current problem, associated risks and

failures. They then propose the use of a comparison model matrix where the

manager looks at the basic alternatives and how the different agile processes

can tackle the specific problems. They conclude that using combined agile

methods achieves more effective results than relying on only one agile

process. They state the major limitation of their research as not being able to

test the matrix on a real situation rather they used examples.

www.manaraa.com

28

Their research work is not biased because past literature is widely consulted.

The only limitation of this research is that the research may be applicable only

to telecommunications hence cannot be generalized. This paper will form a

basis of my research especially on supportive literature on finding out how

well agile methods can fit embedded systems development.

Kaisti, M. R. (2013). Agile methods for embedded systems development -

a literature review and a mapping study. EURASIP Journal on

Embedded Systems .1 (15).

The main purpose of the study is to explore the current available knowledge

of agile methods as used in embedded systems and to find out if using agile

methods in embedded systems is suitable. The researchers explore their study

to include both embedded software and hardware development. They do find

out that agile methods can be used in embedded systems but these need to be

product specific. In addition, the authors appreciate that, with the diversity of

products serving different purposes there is need of adopting different agile

methods in different situations. The authors further define an embedded

system as ‘a computer system that is specifically designed for a specific

function that combines both hardware and mechanical components of a

system’. They give examples of where embedded systems are applied

including cars, phones among others. They also define agile methods as ‘a

combination of practices developed by software developers with a lot of

planning and documentation’. The researchers conclude that for agile methods

to be successfully applied in embedded systems, there is need of solving some

product specific constraints.

www.manaraa.com

29

 They also propose more research on the benefits of using agile methods. This

paper is well written and can be generalised as it has use a lot of references.

The only limitation that I find with this paper is at times using one reference

in explaining a specific point, it will be better if a particular view is supported

by two or more references. Otherwise, it is a good paper and will add value to

my literature review especially when looking at how well agile methods fit

embedded systems and benefits of using agile methods as well as adopting

some of their definitions.

Poulhies, M., Pulou, J., Rippert, C., &Sifakis, J. (2007). A methodology

and supporting tools for the development of component-based embedded

systems. In Composition of Embedded Systems. Scientific and Industrial

Issues (pp. 75-96). Springer Berlin Heidelberg.

This research paper focuses on developing a methodology that can be used in

developing an embedded system that is component based. They combine the

BIP and THINK frame work in their methodology to come up with this

system. The researchers validate their results by developing and testing a

software MPEG encoder on an iPod. The authors are of the view that an

integrated system preserves the structure and semantics of the system model.

They also give the benefits of an embedded system in that it fosters control of

developing and implementation of a product specific component. The authors

of this paper appreciate that optimal use of resources and the quality of the

final product are paramount in the development of embedded systems. In

addition, they are of the view that cost efficiency and meeting the customer

delivery requirements should also be an important consideration.

www.manaraa.com

30

They therefore propose the use of component based methodologies that are

easy to implement, execute and upscale. Further, the authors are of the view

that it is important to detect any defects early in the development processes by

doing a thorough evaluation of the process and the final product. The research

may not be generalised at the methodology is only tested on iPods. Otherwise,

the paper is well presented in a detailed form. This paper will form part of my

bibliography in my research work as it has general information on embedded

systems.

Khanjani, A. (2011). Comparison between four software engineering

Approaches: Component based software engineering, agile methods,

aspect oriented and mash-up. International Journal of Advances in

Computer Science, 2(4), 20-26.

The author of this paper focuses on giving a comparison of techniques used

in software engineering. He compares component based software engineering,

agile methods, Aspect oriented and Mash-up in different applications. The

comparison is done in terms of usability, cost efficiency, security and

reusability. He finds out that the agile method is more effective when used in

the development of small system software whereas in the development of

large scale systems the component-based and Aspects Oriented methods are a

better option.

 The Mash-up method can be used to develop either small or large systems.

He further finds out that all these techniques are cost effective. His study also

finds out that component based and Mash-up has security issue problems. In

addition the author points out that the agile method cannot be easily reused

while the rest of the techniques are easily reusable. The author

www.manaraa.com

31

further gives a description of this technique alongside their benefits. He states

that the agile methodology is customer oriented, easy to develop and

implement within a short time, is of a higher quality and improves

communication and coordination as well as efficient. He further gives the

limitation of agile methods like; it is hard to upscale it, has no specific

schedule, limited documentation and needs several teams to coordinate

development. The author goes ahead to highlight the benefits and challenges

of the other three techniques. The writer concludes that component based

system is the best technique for real time systems because of its flexibility,

efficiency, timeliness and cost efficiency. On the other hand the agile method

is better placed in developing small systems as it is more secure. This journal

is of relevance to my research as it gives a description of different embedded

systems models alongside their limitations and benefits.

PWC. (2013). Accelerating embedded software development via agile

techniques; the nine strategies that lead to successful embedded software

development. Technology institute.

The purpose of this paper is to equip project managers with strategies that will

help them apply agile practices in the development of embedded software.

 The author is of the view that although agile practices are cost effective it

has challenges in its implementation when used in the development of

embedded. Further the author states that, for companies to be able to

differentiate their products and cut out a market niche for themselves they

need to use embedded software which is more flexible and adaptable. The

paper presents strategies that can help companies benefit more as they rely

www.manaraa.com

32

in use of embedded software. The strategies are summarised into nine steps

which the author believes that if followed carefully it will lead to the

development of effective embedded systems. The writer also highlights the

characteristics as well as benefits of the agile methodology in developing

embedded systems.

The writer concludes that challenges in using the agile method in embedded

systems can only be overcome if the design, development and implementation

are carefully handled with evaluations done at it stage. This paper was written

for a specific audience although anyone can use it (Chhya, 2008). The

language used is simple and the techniques can be used on a wider scope as it

is not industry specific. The paper will form part of my literature review

especially when looking at agile methods versus embedded systems.

Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R.,

&Lucena, V. (2008). An agile development methodology applied to

embedded control software under stringent hardware constraints. ACM

SIGSOFT Software Engineering Notes, 33(1), 5.

This paper focuses on a research done by several scientists with the aim of

developing an agile methodology to be used in developing an embedded

control software. The authors do design a methodology of developing an

embedded system using agile principles. The methodology focuses on the

systems constraints, safety and applicability. To ensure the efficiency and

effectiveness of the methodology the authors have a well laid out testing

procedure. The authors are of the conclusion that their proposed methodology

is both cost and time efficient as well as reliable. This

www.manaraa.com

33

proposed methodology which they call TXM follows the principles of agile

methods making software development easy.

 The case study used to validate the methodology is the development of a

digital soft starter and induction motor simulator. They are still doing more

experimental studies with the methodology. This paper has a well explained

methodology and validation procedure. The paper will form part of my review

in looking at how to apply agile methods in developing embedded software

systems.

Gomaa, H. (2008). Model-based software design of real-time embedded

systems. IJSE, 1(1), 19-41.

The author of this paper describes how to design real time embedded systems

using a model based software design method using the UML notation. The

author appreciates that the market trend is currently moving towards more

microcomputer based system because of their efficiency and effectiveness.

The author gives a description of real time systems as those systems whose

decisions are state dependent. This systems need to be developed using

current designs as they process concurrent inputs from several sources. He

also states the design should be able to develop a software that can run

concurrent tasks with minimal constraints. The author gives a detailed

description of the Model-Based software design. In addition, he gives a

highlight of the COMET model-based software and how it works. He further

proposes that a wholesome view in the design of a system is paramount in

meeting the intended objectives.

www.manaraa.com

34

The author concludes that the methods used to design software will soon be

of importance in future. This paper will be used as a bibliography in my

research to gain more knowledge on the development of embedded systems.

Rajawat, P., & Rajendra, P. (2011). A servuey of embedded software

profiling methodologies. International journals of embedded systems and

applications, 1 (2), 19-40.

The purpose of the authors is to give an overview of different ways to use in

software profiling tools and methodologies that can be applied currently and

in future. The authors are of the view that, in order to ensure the application

requirements are fully met during the development of an embedded system a

software developer has to perform an exploration of the design. Achieving

this can be through choosing different methods or dividing the tasks among

teams. The authors also identify some of the available common principles

from their observations as well as evidence from past research.

Then they propose a way of classifying the tools as well as a comparison of

these profiling tools. They classify the tools into software based profiling,

hardware based profiling and FPGA based profiling. The authors further give

the benefits and limitations of adapting the mentioned profiling methods. The

authors of this paper have widely researched in this area and used credible

reference sources. The major strength of this paper is that it gives future

direction that can be used by upcoming researchers interested in this field.

They do so by highlight some of the research gaps and what needs to be done

in future. This paper is related to my study in that I will be able to get more

insight on how an embedded system can be profiled and the limitations of

each approach.

www.manaraa.com

35

Apvrille, L., & Roudier, Y. (2014). Towards the Model-driven

engineering of secure safe embedded systems. GraMSec, 15-30.

The authors focus is to present a SysML-based Model driven engineering

environment which they term as SysML-Sec which will improve the

relationship between software designers and security experts in the

development of an embedded system. They propose that this methodology

will evaluate any security requirements earlier on in the development process.

The authors appreciate that privacy and security issues have recently been a

major problem in embedded systems. Their methodology includes three

stages; analysing the system so that security threats are identified in unison

with functional features of the system, focus of the system design on software-

implemented security mechanisms and lastly validating the system by

formally testing it. The researchers do test their proposed approach to make

sure it is effective through a case study.

Thy aim to further evaluate the validity of this methodology through more

experiments. This paper is presented in well detailed manner with validation

and limitations of the said methodology well-articulated. Therefore the

research can be generalised and adopted by other researchers as it is well

argued with evidence. The relevance of this paper to my study is paramount

as it will provide me with more information on using agile methods to develop

embedded software systems.

www.manaraa.com

36

Kaisti, M. R. (2013). Agile methods for embedded systems development -

a literature review and a mapping study. EURASIP Journal on

Embedded Systems 2013, 1 (15).

The authors’ objectives are to come up with a collection of agile methods

which teams can adopt in the development of embedded systems. The origin

of the practices discussed is from the agile principles as presented in the agile

manifesto which are envisaged to increase team productivity and software

development.

The authors also try to come up with ways of enhancing collaboration between

software developers and product users as well as between traditionally and

agile working teams. The authors appreciate that agile methods are largely

being adopted in software development nowadays because of their efficiency

and productivity. They also examine the effects of adopting agile methods in

terms of productivity and effectiveness. The authors state that the adoption of

agile methods is sometimes challenging as many of the practices are

transformational. They are also of the view that this methods are expensive to

fully adopt as the hardware solely depends on embedded systems.

The researcher therefore embarks on a research of agile methods that follow

the agile principle methodology. They find out in their preliminary analysis

that different companies adopt different agile methods. This paper is still in

development and only preliminary findings are highlighted. Since it’s a

project it might take a lot of time to be completed. This paper will not form a

major basis of my research because it’s not well referenced.

www.manaraa.com

37

2.3 Conclusion

The above articles have a lot of similarities with few differences(Eklund,

Olsson, & Strom, 2014), (Francisco Assis M. do Nascimento, 2006) and

(Koptez, 2000) are taking into consideration how agile methods are beneficial

and their limitations. They are of the opinion that prioritizing agile is made

more difficult by the fact that there is limited functionality on product specific

introduced software. These journals will be of importance to my research

especially in literature review as they highlight the benefits and challenges of

adopting agile methods as well as getting more information on real time

embedded systems and the trends that are currently changing the industry.

The writers have referenced widely thus making their work a credible citing

source. The common limitations in some of the articles which are proposing

a methodology is the lack or limited validation of the methods. An example is

(Goswami & Bezboruah, 2009), where although the researchers give a

detailed experiment of their processed system, they do not take it to trial

therefore the system is not actualised. The authors may be biased in a way, in

that they just need to promote their system but these needs to be backed up by

previous research. In the seventh article this limitation is also depicted as the

research may be applicable only to telecommunications hence cannot be

generalized. The only limitation that I find with (Kaisti, et al., 2013) is the fact

that most of the time the authors have used one reference in explaining a

specific point, it will be better if a particular view is supported by two or more

references. Further on(Poulhies, Pulou, Rippert, & Sifakis, 2007), study, the

research may not be generalised as the methodology is only

www.manaraa.com

38

tested on iPods. The remaining journals do talk about development of

embedded systems and the methodologies are well validated. In conclusion,

all this journals are of relevance to my research if the ones that have

limitations, some of them will be used in the literature review while some will

form part of my bibliography.

www.manaraa.com

39

3 Chapter Three

Agile Software Development and Embedded Systems in Large

Concept

This Chapter will discuss two main subjects; the first is background about

Component-based development, the second concerns with the embedded

system and how software engineering model especially agile model.

3.1 Introduction

In the software engineering, component-based development is of excessive

attention and has attained substantial achievement in numerous engineering

and implication spheres. Component-based development has been

comprehensively utilized for some years in desktop situations, e-business and

office applications and at large in web- and Internet-based dispersed uses. In

several other areas, for instance real-time and embedded systems, component-

based development is used to a smaller amount. It has been practiced that it is

challenging to utilize the similar module machinery in diverse areas as of

different system necessities and limitations. The newest tendencies display

that diverse component expertise are being industrialized for dissimilar fields.

Likewise to object-oriented (OO) example that is subjugated in diverse object-

oriented languages, a CBD model founded on specific shared values is

gradually constructed and utilized in dissimilar constituent tools (Crnkovic &

Larsson, 2002).

The purpose of this search is to provide an outline of values of component

centered software engineering and their operation in growth of embedded

methods. The purpose is to display that the CBD method can effectively be

utilized in growth of embedded methods though the diverse apprehensions,

desires and boundaries are usable then for methods that effectively have

www.manaraa.com

40

utilized component-based development. Straight use of general purpose

component based tools is typically not viable; instead precise implementations

are obligatory, or novel component prototypes that openly address the chief

apprehensions of embedded methods need to be established.

3.2 General Concept of Embedded Systems

Computer systems that are share of greater structures are named embedded

systems and they fulfill several of the necessities of these structures. Certain

instances of such systems are vehicle regulation systems; mobile phones,

manufacturing procedures control systems, or minor device switches. A huge

variety of computer systems are covered by embedded systems ranging from

very small computer based machines to big systems checking and regulating

multifaceted procedures. The awesome amount of computer systems goes to

embedded networks: ninety-nine percent of all calculating components go to

embedded networks nowadays.

Maximum of such embedded networks are likewise considered as physical

systems, which show that the present features for instance reaction time,

adverse case implementation period, etc., are significant project

apprehensions. These systems frequently should fulfill severe conditions for

security, dependability; obtain ability and other qualities of trustworthiness.

Because of trivial scope and necessities for flexibility, but likewise

tremendously low manufacture prices these systems necessitate lesser and

controlled reserve usage, and have restricted hardware capability (Crnkovic

& Larsson, 2002).

www.manaraa.com

41

The enlarged difficulty of embedded present methods leads to swelling

difficulties relating to necessities engineering, complex strategy, initial error

recognition, efficiency, incorporation, confirmation and preservation, which

upsurges the standing of a well-organized organization of life-cycle features

for example portability, maintainability, and inflexibility.

3.2.1 Fundamental Ideas for Component-based Embedded Systems

In standard engineering domains a component is an independent share or sub

system that can be utilized as an element in the strategy of a superior structure.

There are numerous dissimilar proposals for a description of components in

CBSE. In the software engineering world, the greatest perception of

component is founded on (Szyperski, 2002) explanation.

After this description it can be expected that a constituent is an executable

element, and that positioning and arrangement can be achieved at execution

time. In the areas of embedded methods this description is mostly used; this

is particularly factual for the split-up amid component application and

boundary. Though the loads on the double or executable after is not directly

used. A constituent can be carried in a method of a basic program written in a

sophisticated linguistic, and lets shape-time (or plan-time) arrangement.

The features of the constituent that are outwardly noticeable to the other

fragments of the system can be summarized by the component interface. As

per embedded systems extra functional features are as significant as practical

there is an inclination to comprise requirement of extra functional features in

the component edge (for instance timing properties). This permits additional

system features to be described when the system is calculated, namely such

interface allows confirmation of system necessities and forecast of properties

www.manaraa.com

42

of system from components properties. Overall for component expertise, the

interfaces are typically applied as purpose interfaces backing, by latter

binding, polymorphism. Although delayed binding permits linking of

components that are totally oblivious of all other alongside the linking

interface, this elasticity originates with a presentation consequence and

amplified danger for system disappointment. Likewise the obviousness of the

scheme’s presentation or other characteristics cuts as the configuration of the

modules happens at run time.

 Consequently the vibrant component placement is not possible for minor

embedded methods. Owing to the restraints for actual and imperfect means

there are numerous motives to perform component placement and

arrangement at intention period instead of run time: This permits

configuration tools to produce a monumental firmware for the scheme from

the component based strategy and through this accomplish healthier

functioning and improved expectedness of the system performance. This too

allows worldwide optimizations of a still component configuration, contacts

amid components might be interpreted into straight purpose calls in place of,

by means of vibrant event announcements and confirmation and forecast of

system desires which can be completed statically from the assumed

component features. Koala is a typical instance of a component prototypical

from embedded methods industrialized and utilizes at Philips. For great

embedded structures the reserve limitations are not the main apprehensions.

The difficulty and inter-operability play considerably extra significant part.

Likewise owing to complication, the growth of such method is very costly and

decreasing the expansion prices is extremely important. Therefore

www.manaraa.com

43

general purpose component expertise is additional curious than in a

circumstance for minor organizations.

The schemes utilizing these skills go to the group of soft actual systems.

Frequently component machinery is utilized as a foundation for extra

generalization level provision, which is quantified one or the other as

collection of values or branded explanations. One positive instance of

acceptance of a component based expertise is the enterprise OLE procedure

control Foundation, an association liable for a requirement that describes an

array of regular boundaries for procedure mechanization founded upon OLE

and lately .NET. Additional instance of a component-based method is

expansion and usage of the regular IEC 61131.

A set of languages in which purpose chunks can be observed as constituents

and interfaces amid chunks are out by linking out-ports and in-ports are

defined by IEC 61131. Great embedded structures that should accomplish

firm actual necessities frequently do not usage general purpose component-

based expertise. Though in particular circumstances, a condensed form of a

component prototype is utilized on a upper of a present operational method.

3.3 Agile Approaches

Agile approaches Plan driven growth means were almost the single substitute

for administrations till the 1990. (Royce, 1970) Familiarized a prototype that

in the 1970s turned out to be recognized as the waterfall model. It has usually

been deliberated that the accessible single pass waterfall sequence is a model

growth prototype when, in effect, Royce utilized it as a basic instance earlier

happening to iterative representations that he really favored. The substance of

agile approaches is in the

www.manaraa.com

44

incremental and iterative growth. Agile approaches have increased swelling

approval subsequently the 1990s when the agile crusade instigated and

numerous software manufacture procedures progressed for example the

renowned Scrum procedures and Extreme Programming. The sides are

usually minor, co-located and self-organizing, employed thoroughly

composed that aids in creating first-class software. Recurrent response from

carefully cooperating consumers is too endorsed as a ways of satisfying client

requirements(Larman, 2003).

 The agile approaches are a collection of performs shaped by knowledgeable

software designers. The agile approaches can be understood as a reply to plan-

driven procedures that highlight widespread preparation and certification with

severe procedures, and have an opinion that foreseeable and specifiable

explanations to difficulties occur (Dyba & Dingsoyr, 2008). In contradiction

of plan driven approaches, Agile Platform www.agilemanifesto.org

determines the subsequent: persons and connections over procedures and

implements, functioning software above all-inclusive documents, client

association over agreement cooperation and replying to a substitution

subsequent a strategy. Although the platform highlights the standards of the

substances on the left-hand in excess of the ones on the right-hand, it does not

leave those on the right-hand either.

In Figure 3-1 the chief dissimilarities amid the agile growth standards and the

plan driven are exemplified. In plan driven growth, there are consequential

stages which are typically controlled by phase-detailed sides. Data amid the

stages is transported by means of widespread documents. In agile practices,

the growth is completed in incremental repetitions in

www.manaraa.com

45

combined sides. Necessities for the industrialized coordination are kept in the

manufactured goods build up.

Figure 3- 1: The foremost differences amid the agile development

methodologies and the plan-driven.

3.4 Embedded software growth Challenges

 Five challenges have been recognized which have been supposed is needed

to be overwhelmed to pause project growth trade-offs. These tests have been

categorized Tools, Complexity, Interdependency, Verification, and

Optimization.

1. Complexity

 Explanation: complexity is the consequence of numerous tendencies.

It rises because of the amalgamation of additional and extra working

onto a particular system, progressively multifaceted values

(predominantly in media and wireless uses), and the obtain ability of

additional and extra transistors to plan with. Also, as networking

abilities are flattering convincing in embedded methods, a design

www.manaraa.com

46

develops an organization of organizations, adding yet additional layer

of difficulty (mosterman, 2006). To estimate the ITRS “…composed,

the silicon and structure difficulty trials suggest super exponentially

swelling difficulty of the strategy procedure”

 Effect: the ITRS recognizes complexity as one of the key drivers

behind increasing system design costs .Currently increased system

complexity can lead to increased project delivery times and quality

issues.

 Solution Characteristics: some means of affordably coping with

increased complexity must be developed. As complexity is increasing

exponentially, this requires any solution to scale sub-linearly with

complexity if it is to be affordable.

2. Optimization

 Explanation: optimization is essentially a cycle of design, evaluation,

and design again. It becomes a difficult issue because of the length of

time taken to build a functioning system model or prototype to evaluate.

An embedded system contains both hardware and software elements

that interact in complex ways with one another which can make

selecting the ‘best’ combination difficult. Currently the only way this

can be achieved is by prototyping the different solutions or by

guesswork.

www.manaraa.com

47

 Effect: it is often the case that only one design can be optimized (due

to the cost of building a functioning design), hence severely limiting

the optimization possibilities. Choosing an incorrect or sub-optimal

software/hardware combination can lead to project delays or even

project failure.

 Solution Characteristics: it must be easier and faster to develop

functioning system models or prototypes that enable a wide range of

design options to be quickly and accurately evaluated. It must be

possible to simulate the interaction of hardware and software.

3. Verification

Explanation: verification is a multifaceted and extensive reaching theme. At

its humblest it requests whether the structure as realized fulfills the

requirement or not, though much additional multifaceted difficulties are

likely. For instance for security dangerous structures there might be a

condition to establish that the structure never changes through a hazardous

condition or to show that certain system circumstances are inaccessible below

specific operational situations.

 Influence: verification prices are well-known to be increasing abruptly,

with certain writers upholding that confirmation will use 50-70

percentage or additional of plan growth period (El-far & Whittaker,

2001).This condition is probably to deteriorate except confirmation

practices alter. Regardless of automatic confirmation the occurrences

of state space bang (Design + MEDEA Automation Roadmap, 2005).

For multifaceted structures will endure to create mechanization a

problematic job and decrease the probability of

www.manaraa.com

48

attaining complete model and code treatment in analysis. Present design

procedures also incline to discover mistakes late in the growth

procedure when they are greatest costly to accurate (Dabney, 2004).

 Solution characteristics: some procedure of confirmation

computerization by means of the system requirement is virtually

positive. This in sequence has insinuations for the procedure of the

system requirement as any automatic examinations need to be resulting

from an extra proper explanation or MOC which might be a runnable

description. A runnable requirement (or the more overall usage of

Model Based Scheme) will aid with the initial discovery of mistakes

(Executable specifications: creating testable, 2001), and is assessed to

have a considerable influence on scheme efficiency (MEDEA+ Design

Automation Roadmap, 2005).

4. Tools

 Explanation: the growth tools utilized by embedded software

designers are considerably fewer complexes than those utilized by

desktop uses creators for instance. At large, present Integrated

Development Situations are upright at small level growth, but don’t

propose additional high-level growth methods for example re-

factoring. Also these implements deliberate on merely one phase of

the scheme procedure or on one scheme area and there is frequently

restricted incorporation amid tools, for instance amid confirmation

tools and an IDE.

www.manaraa.com

49

 Influence: the ‘point solution’ behavior of present scheme tools

avoids intelligible workflow and tool chain incorporation, for

instance creating cross area optimization (e.g. digital and RF)

problematic or difficult. The whole thing of the encounters itemized

in this paper will need variations in the behavior and kind of

expansion implements utilized for embedded software growth.

Fiasco of implements to change will end development.

 Solution characteristics: tools will be vital to deliver high-levels

of inter-operability. This can be attained at the ideal material level

by the growth of inter-operability values. Otherwise, at the

arithmetical interface stage, a execution groundwork might permit

the addition of the undercurrents demonstrated by diverse tools. In

reaction to this test there has been a change in investigation

significances in the arena of demonstrating and reproduction in the

direction of the elevation of tool inter-operability and additionally

overall workflow matters (www.spiritconsortium.org).

http://www.spiritconsortium.org/

www.manaraa.com

50

4 Chapters Four

Agile and Embedded Systems

4.1 Embedded Systems Characteristics'

 A system that is not primarily a computer but contains a processor is known

as embedded system. However, it is more important to highlight the common

aspects of most embedded system to some extent (Noergaard, 2012).

 Price and Size

To offer an appealing price point and portability to end users, embedded

systems are engineered to possess just enough resources, such as processor

power, size of on-chip / off-chip memory and number of peripherals. Many

embedded systems products also have physical size constraints, size and

weight for example, to be as portable as possible (Deng, 2014). There are

some embedded systems that have physical constraints on form factor and not

much expensive. These embedded systems are also using small components

to optimize the performance at the cost of maintainability. To operate the

embedded systems “clarity, portability or modularity” needs an optimization

factor by using low intensity language. For example in place of C language or

C the code is generated by the UML model. This modification is usually

applied only on small components of the system, recognized by means of

“90/10” principle as being the major performance bottlenecks (Dahlby, 2004).

www.manaraa.com

51

 Power Requirements and Limitations

Compared to desktop computers, embedded systems often contain far less

computational power and memory. The available processing capabilities,

memory and peripherals are just enough for the tasks that need to be

performed (Deng, 2014). System software utilizes the battery, moreover

during emergencies and continually. Hence, consumption of power is chosen

for most embedded systems although it comes at the rate of sophistication and

maintenance requirement (Dahlby, 2004).

 Real-Time Processing

A real-time system is one whose correctness involves both the logical

correctness of outputs and their timeliness. It must satisfy response-time

constraints or risk severe consequences including failure. A real-time system

is one in which the correctness of the computations not only depends upon the

logical correctness of the computation but also upon the time in which the

result is produced. If the timing constraints are not met, system failure is said

to have occurred. These systems respond to a series of external inputs, which

arrive in an unpredictable fashion. The real-time systems process these inputs,

take appropriate decisions and also generate output necessary to control the

peripherals connected to them. The design of a real-time system must specify

the timing requirements of the system and ensure that the system performance

is both correct and timely (Vijay, 2001). The real time constraint also gives

favor in performance aspects over maintenance perspectives. These operating

systems are mainly using “prioritized scheduling” to make sure that either

deadlines are meeting or not, but “careful thought” needs to be separate into

the execution stage, control /organize the data flow between the

implementation and to set the levels of contexts (Shih, 2014).

www.manaraa.com

52

Use Custom Hardware

Embedded systems are often designed to perform a small set of dedicated

tasks continuously and repeatedly. The hardware is customized specifically to

fulfill the requirement of targeted tasks. Thus, the development of embedded

systems usually involves a software and hardware co-design pattern which

requires developers to possess detailed knowledge on both software and

hardware of the system as a whole (Deng, 2014). The software of a system is

often composed of “off the-shelf processors” coupled with “off-the-shelf

peripherals”. Components of the software must be in ordinary size, because

the convention integration and similar needs requires high amount of unity

among the software and hardware of the system. This software is frequently

accessible for purchasing and for using purpose. The software of embedded

system is mostly custom developed in houses, or to attach together “off-the-

shelf” software in a tradition arrangement. The efficiency of a system totally

based on numerous examines processor or slave/master processors. Careful

thought is essential for processing the tasks among “processors, method,

extent and timing of communication between processors”. However, software

takes advantage of specific “FPGAs or ASICs”. Due to this reason this

software must interact with the hardware (Dahlby, 2004).

 Hidden From View

 By character, much software naturally has a restricted interface with their

“user” that is true user or other component of the super system. The main

objective of the embedded system software is to develop to meet, instead of

the requirements of the user.

www.manaraa.com

53

 Monolithic Functionality

 Many software is using for the particular main reason. These systems are

decaying into components and these apparatus have low fractious consistency

power and fractious coupling. That means, each constituent has a discrete

purpose. The connections among the mechanism are limited to a small number

of fine distinct points. Each components of a system must be operational to

perform the functionality. All the components must be function properly so

that system can achieve useful functionality so that this system can be called

as the “monolithic system”. That creates the “non linear jump” in the

efficiency of the software. The maintainability of the system is in distinction

to some other types of software, where the 50 percent the software must be

completed and 50 percent of the software must be function properly.

 First example, “space probe” is invented to travel the distances by or to other

planets and to send the data back about them. In space probe, many

components which perform low level functions such as “landing, targeting,

deploying sensors, communications and deploying solar panels”.

This “space probe” will be ineffective, in case any of the mechanism is not

working properly or missing. Second example, cell phone has all associate

features such as “cellular base station selection, the user interface, and the

communications protocols”. These features have vital aspects to transfer the

audio data among the precise remote nodes and user. In comparison,

software’s such as “desktop tools, web services in which low level of

responsibilities, contribute as independently to the aggregate system

functionality”. The components of embedded systems are much distinct and

combined into a “monolithic functionality”. Embedded systems will combine

software components for low rank device driver I/O, signal

www.manaraa.com

54

processing direction, control and communications protocols. Each component

requires different skill set (Shih, 2014).

 Development Tools Limitations

Unlike enterprise system software development environments that enjoy rich

development tools, embedded counterparts often use basic editors and

compilers in many development environments because embedded systems use

custom hardware from different vendors, which have limited tool support.

Low-level software and hardware interactive debugging tools (Deng, 2014).

Some software regimes have tools to support the development process.

Software development of embedded systems is limited and use only basic

compiler tools. Embedded systems uses custom hardware, which may not

contain tool support and through this embedded systems perform unnaturally

and to make it difficult to freeze the “entire execution” context under the

control of a debugger and the data which lies between the host-based tool and

the embedded target. Many embedded systems create their own tools to use

for testing and debugging, this is only because of the limited commercial tools

(Dahlby, 2004).

 Robustness Requirements

Many systems are using in medical purposes, in ruthless environments and for

operations which are critical. For that reason, necessities for “correct

exception handling, reliability and mean time between failures” are usually

more rigorous for embedded systems software as compared to other software.

This translates into testing requirements and stringent development processes.

Most embedded systems are subject to dictatorial necessities which decrease

the liability rates by obligatory the process of extension, or at slightest

specifies the records, which come with the software. Moreover, it

www.manaraa.com

55

is impossible to upgrade firmware of several embedded systems, which is very

important to get necessitate to “get it right” in the system’s primary

commercial release (Dahlby, 2004).

 Durability

The software is being used for many years. It gives the better documentation

as compared to the documentation of “source code” itself, to explain the

embedded systems software (Shih, 2014).

4.2 How do Agile Methods Fit with Embedded Systems?

This part, explains agile method distinctiveness which are mentioned above

and to explain the development process of software.

1. Agile Aspect: Use Regular Rapid Cycles Which Create Executable

Deliverables

 Implications:

Embedded system is known as monolithic system, it is difficult to reduce the

functionality into smaller pieces. There must be new feature in the embedded

system within a short cycle and this feature must be coarse. Thus, large

amount of work is needed for the decomposition plans. Instead of focusing on

disintegration, the cycle should be modified to fit the existing decomposition

dimension. Extra long cycles are needed at the project’s initiation along with

the development of a “simulation and/or the OS infrastructure, and the

hardware bring up”. If a new feature is hastily adjusted in the ongoing cycle,

it may be implemented inefficiently. This will lead to the refactoring of a new

feature in future cycles. Thus, the approach, although being potentially

effective, may present problems (Suomi, 2014).

www.manaraa.com

56

Due to the cycle bloat the “executable deliverable” may turn out to make it

inefficient. Secondly, after some instance the product needs optimization

refactoring because product goes out of cycles. Finally, the product ended up

with lack of efficiency instead of few exceptional “cycle hungry”

features/functions. For instance, “debugging code” must be used and finish up

with memory practice and dominating cycles of the product. This convention

can easily be compiled and disabled, if it designed properly.

 However, if system developed ad hoc, more refactoring work will be required

to immobilize it. This “death by a thousand paper cuts” situation is very hard

to stick with hindsight (Srinivasan, Dobrin, & Lundvist, 2009). In comparison,

a “Big Design Up Front” can put a few conditions for which features should

be applied in a efficient way from the beginning. To support the cycle or

memory effectiveness the coding practices must be observed across the world.

Whereas, “agile practices” disagree with up-front design and it should be

reduced. Good practices are those which deal with unforeseen issue and

volatile requirements. However, the requirements for embedded systems are

more significant than the requirements in the general software. Significant

requirements are more cut, dried, and frozen. By the use of embedded systems

software, the development methods are needed to bring a change.

Even if an embedded system perform efficient and convey useful performance

in minute pieces to make a customer release on each iteration, where the

“complexity, size and reliability” are sufficient large to form momentous

system. The development process will give great benefit if these system tests

can be automated. “Running load tests” requires additional analysis of

hardware which is much expensive. Hence, the better rule for embedded

systems is only to “invoke the overhead of extensive system for operations

and commercial release qualification”.

www.manaraa.com

57

Agile aspect benefit for embedded systems: neutral

2. Agile Aspect: Focus on Coding Rather than Planning or

Documentation

 Implications:

In software development there exists a tension between quality, cost, and time.

Delivering cost competitive quality software in today’s time constrained

market is a difficult task. Many traditional software processes are top heavy

with documentation and rigid control mechanisms making it difficult applying

them to different software projects. New families of processes, referred to as

Agile Processes, are making headway into the software industry. These

processes focus on code rather than documentation calling themselves agile

because, unlike the traditional processes, they are adaptable (Deng, 2014)

Placing more focus on coding and less on framework and documentation has

several enormous benefits. Initial cycles and memory usage metrics are

brought into consideration. Taking measurements beforehand is not a good

indicator of complete product but has an edge over the rough calculations.

Planning a project accurately and detecting errors at an early stage are the

outcome of memory usage projections and having cycles. If the projections of

the cycle are not in line with the sample processors capability then another

prototype with robust processor and a bigger memory can be produced.

Attached with this is the condition that the original prototype should posses

the utmost capability.

www.manaraa.com

58

 If it is not desirable to launch second spin of the sample you will know

beforehand the time needed for optimization. Design and documentation hold

immense importance in embedded system. The advantages of timely feedback

need to be measured against the design and documentation of embedded

systems. “Upfront design” is very significant due to obligatory limits that how

much this design can easily be downstream. As compared to other software,

deprived designs in a product are leisurely but still it functions. These systems

have deadlines and these deadlines must be authentic and if this system is

leisurely in function than it is ineffective (Abrahamsson, Warsta, Siponen, &

Ronkainen, 2003)

Embedded systems gives importance on its functionality and portability, its

portability can be compromised and this makes the first preference of

“operating systems, processors and compiler”. This system requires well

design, portability and performance to change the lifetime of product. The

partition of work among processor cannot be changed, so that’s why it is vital

to design the “mapping of work and tasks up front”.

Therefore, the design of product applies additional interest in the systems.

There is an extra requirement for documenting in an embedded system.

Software’s can rely on self-documenting codes but this does not hold true for

embedded systems since they want to have an optimized code. Moreover,

embedded systems have a long life which makes it difficult for the original

developer to be there any time in the problem in the system arises. Original

developer won’t be available during the time the product is in the maintenance

period. There are certain regulatory laws to which the embedded systems are

exposed in respect to documentation.

www.manaraa.com

59

Although the agile methods aid in the production of different artifacts but

according to the agile viewpoint these artifacts may not be of much

importance since this view states that the software must be well documenting.

Moreover, the software must be written down first and then the next step must

be creating the software. Working software is the irresistible goal that is the

very basic and one dimensional. The foremost deliverable of a software

development project is the working system, however, there are some more

deliverables which are secondary in nature and they must be taken into

consideration. Some of the secondary goals are stated below (Lindvall,

Muthing, Dagnino, Walliam, Kiefer, & Stupperich, 2004)

4.2.1 Objective Proof to Ensure That the Software Works

Appropriately

Some examples of the artifacts are “requirements traceability, records of test

coverage and records of test and source code quality metrics”. These

“artifacts” can be needed to ensure that the software systems work

appropriately. There are several tools inculcated in the agile process. These

tools will help to generate the documentation for user automatically. The

focus of the “working software” must not preclude documentation. This needs

to be made sure (Dahlby, 2004).

(a) To Make Sure That the Working of the Software Is Smooth and Free

From Errors in the Upcoming Period

In order to advise the maintainers of code so that they can comprehend the

complex structure of the underlying system more artifacts which include

architecture documentation may be required. Source code quality metric,

decision relating the designs, and design documentation aids the code

www.manaraa.com

60

maintainers to understand the level of system. Most of the customers are

unaware of the arrangement about future commitments; therefore customers

may not demand the artifacts. Irrespective of the fact, those customers directly

ask for documentation or not it is the professional duty of the developer to

consummate it for the complex program (Dahlby, 2004).

(b) User Documentation

Agile methods are capable at establishing fine usability in the software. The

usability of the software continues afar from the software. Antiquity of the

documentation done by user include a number of things such as errata list,

guide needed for installation, service provided to customers, summary, and a

guide of user giving him directions. In many cases customers will decidedly

ask for it but in several cases customers will be unaware of it unless the issue

arises. The agile process give rise to the production of artifacts, extracted

from the existing occupied software, however this process needs to be

managed with care. Agile philosophy states that occupied software are really

important however user documentation denies it (Dahlby, 2004).

Agile aspect benefit for embedded systems: neutral

3. Agile Aspect: Refactor Continually To Improve Code

 Implications:

Refactoring practices for design and code, this strategy identifies Process

smells and targets the worst of them with specific agile practices drawn from

several popular agile processes.

In order to improve the modules of code it is a common practice to refactoring.

However, refactoring is not that easy. One of the issues of refactoring is to

choose the software module to improve the iteration.

www.manaraa.com

61

Furthermore, it is difficult to refactoring the chain of tightly coupled modules.

Moreover, when refactoring adopts a substantive approach and do not indulge

in religion related wars. More focus needs to be placed on management so that

working can improve et cetera. Several benefits of refactoring are that

refactoring minimizes “entropy growth” of the aging software system.

 The coding knowledge can be improved along with the style. This also leads

to similarity for different developers in the software module. It is observed

that refactoring embedded system is much more challenging that refactoring

the development of software regime. Firstly, Stressing on performance as

compared to clarity hinders, refactoring to comprehend and modernize old

codes. Fortunately documented information is available. This together with

good architecture helps to refactoring. The quality of architecture is

compromised by agile methods. Even though if there is a good architecture

available that takes into account adequate coding, it may be a gross let down

due to poor documentation. Secondly, the cost of modifying previously

constructed architectural plans might be too high, hence weighing down the

idea to change it. Example of such is a compiled work by several professors.

In such cases, refactoring may not be advantageous. In fact, it is more effective

to make a large scale improvement in the design than small scale localized

changes. As a generalized rule, an initial expert guess might just be an

excellent answer key to several costly problems. Thirdly, the tremendous

increase in software specializations and its sub-branches has made refactoring

ones code by other just impractical.

It is not possible for any one individual to excel in all the fields of software

specialization, hence, expertise of an individual of that particular field may

www.manaraa.com

62

be required to master a particular code/set of instructions. Thus, the idea of an

all-in-one programmer may sound ridiculous.

Code ownership may sound a promising idea but it is also immensely

important to take into account the level of individual skillfulness, which may

limit the whole deal. One successful strategy may be pair programming where

a poor programmer’s work may be reviewed by a more skilled person. In

summary bringing changes to an original design is always a good idea unless

the degree of alteration is limited and expense is bearable. And in process of

going through the code repetitively, limited error and maximum optimized

work is ensured (Dahlby, 2004).

Agile aspect benefit for embedded systems: beneficial

4. Agile Aspect: Communicate Continually And Extensively Within The

Engineering Development Team

 Implications:

According to the developers, “agile system” needs to exchange a few words

personally instead of using other modes of communication such as messaging

or documentation. Code reviews and pair programming are one form of

personal communication. The personal communication among the developers

is enhanced by embedded systems that produce obfuscated codes, thus leading

towards the payment of high dividend. Personal communication through

embedded systems tends to pose complication that is the availability of

hardware. There is a shortage of supply of hardware systems due to their high

cost and fragility. The reliability testing of hardware and integration of

hardware and software are in competition with the development of software.

The prototype systems that are functional must

www.manaraa.com

63

be fully utilized. In order to achieve this objective developer need to work like

a tag team. This means that one developer needs to work the entire day(early

schedule) and then hand over the work to the second developer who will work

on it overnight(late schedule).

Agile teams consist of multi-skilled individuals. The development teams also

have on-site customers with substantial domain knowledge to help them better

understand the requirements. Multiple short development cycles also enable

teams to accommodate request for change and provide the opportunity to

discover emerging requirements. The agile approach promotes micro-project

plans to help determine more accurate scheduling delivery commitments

(Dahlby, 2004).

 This practice will enable the development team to overcome the hardware

shortage but there must be expense of face to face time among developers.

Furthermore, there is an additional shortcoming of depending lying on

personal communication that is lack of proper records for the developers who

have to sustain the system. Moreover, system maintainers often find the

documentation compiled for communication among real owners invaluable.

Therefore, in individual communication the need of appropriate

documentation is needed by potential maintainers. The difficulty to make the

code self-documenting and the long term nature of embedded systems poses

a problem. There are several advantages of in person communication. In

person communication is very useful if it does not create a problem in

documentation on the embedded systems to be used by future developers and

maintainers or the system. (Suomi, 2014) (Srinivasan, Dobrin, & Lundvist,

2009).

Agile aspect benefit for embedded systems: beneficial

www.manaraa.com

64

5. Agile Aspect: Communicate Continually And Extensively With

Customers

 Implications:

Encouraging the communication between customers and the team who has

developed the system is little rewarding since most of the embedded system

software are not seen by customers. The stories such as “replace Gaussian

elimination with L-U decomposition”, “hand-code the inner loop of foot in

assembly”, and “add in-band control feedback to the channel X data stream”

are of little use to customers with the intention of selecting stories for the

upcoming iterations. Since these decisions are hard to make it would be more

feasible to provide the real customer with all the necessary information to help

him make accurate decisions. It would be suitable to set up a “tech-savvy

marketing team/ a business-savvy engineering management team” which will

act as an alternative for the actual customers and aid them in deciding the

features which are important in the long run as well as in near time. It will

also help customers in choosing the optimal development path for the

iterations. Engineering team must possess business skills and extraordinary

technical skills for embedded systems. The team should use proactive

approach thereby utilizing their skills when needed, setting out course for the

underlying project and correcting themselves continually.

 Using customer proxy for the embedded systems to deal with customers, who

are not educated, is called a counter note. Under such circumstance it would

be wise to use agile capability to reinvent the ways of developing system and

evaluating the systems in order to cater for difference between two parties that

are the real customers and alternative (Dahlby, 2004).

Agile aspect benefit for embedded systems: unbeneficial

www.manaraa.com

65

6. Agile Aspect: Continual Measurements, Planning, Projections, and

Adjustments by Management

 Implications:

Performance constraints are faced by embedded system. Furthermore, they

also face time constraint, budget constraint as well as staffing issues. These

problems are common to all software developers. It is very important to

manage the delivery date of project, staff issues as well as the feature set.

Moreover, it is also very essential to obtain a timely feedback on actual

performance of the underlying partial system which will help mangers to

decide whether and when there is a need for performance optimizations. The

projections made by mangers must take into account that the work of the

embedded systems is not so predictable. There are several reasons

contributing towards this variation. They include unusual timings to find bugs

and the need for performance optimizations.

The bugs found in the embedded system can cause a lot of disruption due to

the interaction and several race conditions in a real time system when

multitasking that is to perform several tasks at a time. It has been debated that

the application of debugging methods in an embedded system is hard.

Statistical prediction and measurement of effort required in debugging is one

of the best means to cater for variation. Debugging, integration with coding,

combine testing and code development are all part of agile method thereby

facilitating in making predictions. Brook conundrum states that including new

developers to a project will make the project delayed because of (a) the size

and (b) its complexity. Agile methods provide quick and timely feedback

which helps the managers analyze if there is need to hire extra

www.manaraa.com

66

staff. Advantage is that managers can analyze the impact of hiring staff and

increment in the manufacture rate (Dahlby, 2004).

Agile aspect benefit for embedded systems: beneficial

7. Agile Aspect: Test-Driven Development And Regression Testing

 Implications:

Agile method focuses on testing the system at beginning stages in order to

identify a bug to rectify as soon as possible. This practice is considered

beneficial universally as the expense incurred on removing the bug grows

exponentially once the entire system is developed and then the bug is found.

It is simpler to identify the bug at unit level and remove it rather than waiting

for the entire system to complete and then debugging from the whole system.

Due to various reasons it has become difficult to debug an embedded system.

The codes and log used for debugging may be limited my memory constraints.

Using breakpoints to make the system stop working or system execution

through single step are not possible due to time shortage and performance of

multiple tasks at a time. Inserting the code used for debugging at a different

time may conceal the actual problem (bug) that needed to be solved

(removed). There are two types of processors. One of them is the target

processor which is being debugged while the host processor is the one on

which the commands used for debugging are operated. A unique type of

hardware is required to deliver the commandments needed for removing bugs

along with transfer of data between these two types of processors. In order to

debug and test a system a unique system must be developed resulting in access

contention. Systems used for testing may be needed to uncover bugs. Even if

a company has a highly efficient testing mechanism debugging will be

required when it

www.manaraa.com

67

comes to amalgamation of the components of software and unification of

hardware and software. Unit testing as well as additional integration tools may

remove many bugs. A stimulator can be developed for the embedded system

to help in debugging and consolidation of hardware and software (Douglass,

1997) (Thüm, Kastner, Bendun, Meinicke, Saake, & Leich, 2014). In order to

use a stimulator you first need to design stimulator framework (especially

when within a processor multiple task are being controlled by the stimulator,

when there are several systems and within a system there are more than one

processors), hardware abstraction interface needs to be designed in order for

the stimulator framework to correspond with the application, to organize

software for target and real stimulator, and to deal with the speed issue of the

stimulator. However, there are several advantages provided by the stimulator.

First of all it provides attractive returns on the investment made by disuniting

the hardware bring up and the development of software. It also gives the

facility of removing bugs which is convenient. Furthermore, stimulator

encourages the testing of software on a grand scale. Stimulators also provide

the advantage of load testing which may not be available in physical systems.

 It is difficult to perform regression testing for embedded systems. Specialized

test harness and the equipment needed for testing are difficult to find. It is also

very difficult to examine the internal state of system to rectify wrong and

certify the right. Test system shortages also pose a problem. It is advisable to

perform the regression testing on the stimulator and real systems desirably

from a framework that combines the execution of test and the logging of test

record for both the real and stimulated systems. Therefore, despite all the

hurdles faced in the testing and removing bugs in

www.manaraa.com

68

system it is feasible to use the “agile method” by experimenting the system

and to identify the problems in a timely fashion so that the wrong can be

rectified early within the scheduled time (Eklund, Olsson, & Strom, industrial

challenges of scaling agile in mass-product embedded systems, 2014).

Running the tests over and over again gives you confidence that the new work

just added to the system didn’t break or destabilize anything that used to work

and that the new code does what it is supposed to do. Running the tests over

and over (particularly acceptance tests) can also help you understand what

portion of the desired functionality has been implemented. Together the set of

automated tests can form a regression test suite. Regression testing is selective

retesting of a system or component to verify that modifications have not

caused unintended effects and that the system or component still complies

with its specified requirements (Dabney, 2004).

Agile aspect benefit for embedded systems: beneficial

www.manaraa.com

69

5 Chapter five

An Agile Development Methodology Applied to Embedded Control

Software under Stringent Hardware Constraints

5.1 Background

In the present era, it has been seen that people are trying to rely on micro-

controllers for their work related to computers. There are applications where

many of the people are able to sell the microcontrollers which are mainly of

different bit size, primarily, 4-, 8- and 16-bits (Koopman, 2006).

 Approximately all the people have been processing with some wide range of

machine systems which are monitored with a better controlling development.

As there is increase in the complexity, the development is also affected which

also has a great impact on the different developing methodologies which are

being worked upon. The development is mainly applies in order to take care

of the size of the team as well as meeting the demands of the projects. The

scope and the requirement is generally based on the constraints of the project

which will develop and control all the discredited controlling systems for the

software to run properly on the PC’s (Personal Computers). It is appropriate

to develop and work with the functioning of the software which is developed

depending upon sharing different characteristics based on the ideas related to

real time issues.

 At a certain age, it becomes important that the applications have a great

algorithm which follows the output as a result. With the control over the

different complexities, the system is able to share the most embedded systems

to get run on all the hardware and the software devices. It becomes important

to reach dedicated software which will be able to reach a common

www.manaraa.com

70

based system approach leading to better energy consumption as well as

managing the time of execution. With the different footprints, one has the

ability to match all the risks and critically manage with all the failures which

try to affect the embedded control over the systems.

Hence, it becomes important to plan all the technologies and try to match with

all the contextual based investments which would not lead to project failure.

As per the contextual part, there is a development mainly on the different

methodology like the TXM which is named as the next Methodology.

Depending upon the agile principles, it mainly work for a better planning and

flexible approaches along with interaction, approach for incremental

development too. The embedded software are generally to compose all the

practices which comes under the part of Software Engineering and the Agile

Methods (Scrums and the XP) aim for a composed approach for minimization

of all the problem set which could lead to different development in the

software context. With the requirement to achieve all the volatility and

manage the risk, it is important to practice and achieve some of the hardware

as well as (Sangiovanni-Vincentelli & Martin, 2010).

 Software developments primarily based on the design of platform based

development. The goal is mainly to focus on certain features which will have

a better impact on the designing methodology and lead to changes in the

software along with embedding with better technologies as well. Some of the

major works that have been proposed in these times are:

www.manaraa.com

71

 There is a flexible approach which has a better trade off and

performance development to adapt to different changes done under

high platform programs.

 With the different processes under it, there are practices for the

development of the embedded software which are under main

constraint problems.

 A support to software always drives the hardware and approach towards

a flow which could have better specifications for implementations.

 The techniques are handled under the proposal which would be in

combination and has never been able to analyze it before.

 The iterative approaches and the incremental sets are there to offer all

the process to the designer where one can validate all the specifications

and try to manage with the process.

 The experimentation on the results depends on the applications which

have a better proposal to the strategies as well as control over the

systems.

5.2 A Brief Look at the Agile Methods and Patterns

The below are the details over all the principles and the methods which have

been proposed to manage the presentation and identify approaches to the

product development and its management on all grounds of practices.

www.manaraa.com

72

5.2.1 Extreme Programming

With the most recognizable methods, it is one of the important methods which

focus on how to manage and orient communication along with team

orientation. (Sangiovanni-Vincentelli & Martin, 2010). The XP is generally

composed of those 12 practices related to core which have been integrated and

composed under those methodology which have the features relating to:

 The process of continuous changing generally has a way that it is able

to alter all the behavior, thereby, trying to manage with the codes along

with improvement in the structure as well as integration process.

 The code has been compiled to be tested under the process which is

checked every time the work is done.

 In the test development driving process, one can estimate that they are

mainly written for the developers who want coding as their major goal

and the units are automated under the system which completely affect

the functionality of the code piece.

 One has the project which needs to follow all the code style which is

for maintaining the standard practicing and performs consistent

formatting for the source code which is readable with the programming

language worked upon.

The specifications of XP mainly promote an approach which has a way to

choose all the designing systems along with describing all the main benefits

which could help to increase and aim to reduce all the risk of the project and

lead to uncertainty at an early stage.

www.manaraa.com

73

5.2.2 Scrum

It is one of the simple approaches which is able to manage the process of the

software development process and has been worked upon both the

environmental as well as technical approaches for different variables

depending on the process.(Schwaber & Mike, 2002). The Scrum is mainly

composed of 14 practices which are under a consistent feature which could

integrate and manage the proposal of better methodologies which mainly

include:

 There is some iteration in the organization of the calendar of 30 days.

 The planning practice by sprint consisted of two meeting which

contains the list of all the features and the backlog stage. The use case

are the best to enhance and promote a better refinery for the system

approach. This would generally reprioritize the ownership of the

product and help the stakeholders for the next iteration process. As per

the second meeting agenda, there are certain Scrum figures which are

able to achieve all the requests that have been made to create a better

backlog which contains mainly a detailed task which needs to be

accomplished in the current iterative process.

 The practice of Sprint reviewing is mainly that team which presents all

the results that have been obtained under the main iteration which

shows the work of the software and the owner of the product and

customers, stakeholders.

 In the practicing of daily scrum, there are certain meetings which are

being held up with time for answering some of the important questions

which are answered by the team of Scrum people. They employ all

those process which are for process to control the model

www.manaraa.com

74

and try those which aim to inspect all the conditions which have the

activities which empirically determine what needs to done higher in the

next order.

In order to produce a better expected result, there is a great productivity which

strongly depends on mainly the skills and the motivation of the people and

how they are involved in the process. With the different sections, section 4 is

mainly showing how the practices for Scrum came into existence and they

were adapted for a better proposed technology.

5.2.3 Patterns for Agile Software Development

The agile patterns represented generally is (Coplien & Harrison, 2005)

combined with different patterns of XP and thereafter one could start working

in a way to achieve the development of the code for the organizations. These

patterns are split generally into categories which are completely different and

provide a better collection of different patterns, overall.

 With some better languages, one is able to provide a collection which could

facilitate the organization and develop the merchandise to follow all the

patterns to clarify the needs as well as coordinate the activities of the project

which mainly depend on the development and the clarification of the

merchandise needs. With the clarification and managing the project activities,

one could generate a system build which could develop and clarify all the

needs to coordinate the different activities of the project, thereby, trying to

generate a better system built up in order to clear and concentrate on the

primary goals of the team. With the development of the languages, it becomes

important for the organization to outline and try to manage with the high-level

approaches which can quantifies all the details as per the projects

www.manaraa.com

75

and is able to guarantee that the client would be satisfied with the

communication needs and the system too. The major aim is to focus on a better

vision which has a concerned development related to all the team work which

would build up a better structure as well as provide to a collection which could

facilitate the overhead of the project and realize that the collection is mainly

for compatible reasons and able to withhold different merchandise styling.

 The latency is to work and focus on the different patterns of the code where

the individual is able to provide with different collection in the organization

to keep a better approach and make assurance that the implementation is done

materially. The major features for the non-trivial solution comes after

configuring all the integrated structured patterns which would have better

impacts on the planning methodology as well as on their integrations. The

patterns are generally outlines to supply a better facilitation to the different

mechanism teams which are able to work on different versions completely

and try to re-define all the difference codes which are able to parallel manage

of all the link ups and the development stages. The code has been formed up

to determine how the projects are there to manage the main and all the

important parts.

www.manaraa.com

76

5.3 Proposed Development Methodology

The proposal of the methodology generally looks forward for all the aims

which could re-define all the major possibilities where the role is to manage

the lifecycle and all the tools which could be under the employed way to

manage the system projects. There are different processes which could be

categorized under the process of developing a system namely: system

platform, product development and management. With the different

platforms, one is able to aim and work on different products where the

user/designer could aim for better component and lead to a better architecture

approach. The platforms for API are mainly to maintain the library which

could manage the system approach and the parts are generally chosen to lead

to better encounter of the architecture and the platforms. There is one of the

major possibility that the architecture needs to meet all the major constraints

which need a customization process to be carried out. The configuration of

the logical approach is mainly to integrate and run all the successive

implements which would have a better way out to all the programmable

designs and other methodologies. The product development mainly tries to

offer all those practices which could help in developing better applications as

well as helping integration on a different platform level. With the major

functionalities rising up, the products are generally partitioned under those

areas which could manage all the tasks and lead to a better consumption in

energy as well as execution time. With the intact memory size for all the major

application components to be worded upon. The techniques are majorly

applies in the incremental and the iterative matter and one has to manage all

the scope of the paper as per the mechanical design. The parameters are

calculated and managed under the different group processes which are able to

control and mainly influence the different

www.manaraa.com

77

platform systems. When there is an initiation of the project, it is mainly

worked upon the major developments which could lead to a start-up and then

process is continues to manage the plan. The corrective answers are carries in

the sense which could aim for tracking the project which would assure the

different parameters of the project. With the development of different

processes, one is able to group and practice all the Scrum methods which are

able to design the agile patterns and describe better promotion (Schwaber &

Mike, 2002) . To the next subsections, they mainly emphasize on description

of the groups processes which are held with different and major roles and

responsibilities, and the processes lifecycle of the proposed methodology

5.3.1 System Platform Processes Group

With the different compose of the process, the system groups are generally

focused on the major requirement of the product as well as different system

platform, managing the product line, and trying to optimize the system. With

all the requirements, the process tries to aim for major requirements of the

system which are generally categorized under the functional as well as non-

functional categories and look forward which are relevant enough to

determine that the system platform which is being built for the product is

proper or not. The platform instance is that process which tries to help in better

development of the team, defining the system platform by making use of a set

to design all the tools and benchmarks which are essential for the better

platform support of the group and the process.

To define the platform, it becomes important for the product to develop and

step a position which could help in categorizing the process, allowing

developing a team to integrate and implement all the major functionalities

www.manaraa.com

78

which could be helpful for a better release of the system. The major versions

of the different products are mainly for the product which is developed and

worked under the different functionalities of the system to help and process

the development line. The optimization process provides a great set-up which

could optimize and make the assurance of the different variance of the system

products as well as better consumption of energy. The program size and the

memory size are mainly enough constraints to outline the development of the

product.

5.3.2 Product Development Processes Group

 The product development processes group generally is composed of some of

the major following processes:

 The implementation of the different functionality implementation

 The integration of the different task processes which could refactor the

system approach

 The optimization of the system which could handle all the functionality

as well as process which could lead to different test case which are in

process.

The quality of the product is determined by a continued test which could

create and manage with all the functions complex or simple. One could create

all the testing mainly which could apply towards validation of different layers

of API. With the creation of different functions, one need to properly manage

with the different applications of the software which try to integrate and the

task has the process to suit all the implementation functionalities as well as

complex functionalities too.

www.manaraa.com

79

The integration of the task generally means to integrate all the new and major

implementation which could develop into a better line of product and have the

drive to force all other team members to work with same zeal. The process of

refactoring mainly focused on the development where the major opportunity

is to improve all the coding part and change it without any major alterations

in the behavior related to the external matters. When the code is refactored,

one could find that the development team is able to optimize it and make it

useful for the teams to work for monitoring support as well as profiling them

to understand the major instance too (Junior, Neto, Maciel, Lima, & Rib,

2006). Once needs to manage the energy and the memory space which has a

better appearance and could meet the software needs too according to the

constraints in the system.

5.3.3 Product Management Processes Group

The product management processes cluster consists of all the subsequent

processes:

 product needs

 project management

 bug following

 sprint needs

 wares

 implementation priority

The methods which merchandise needs are mainly those which belong

conjointly to those systems which are platform dependent process groups.

Generally the standards aims to meet all the requirements which are important

for the major functional and non-functional requirements and which have a

major part to manage and permit the events which could

www.manaraa.com

80

implement a better team of work related to the system needs as well as

managing the different blocks of merchandise. The backlogs and the activities

which are coordinated are under the different build and are majorly

implemented depending upon some bugs where the project could generate a

better system built and lead to a lifecycle which has been properly managed

and led to a resourceful lifecycle of different problems of the project.

To reach and correct the bugs, there are tasks to enhance the activities and

supply all the required information which would support through some of the

major qualities, thereby, investigating all the methods which are important to

be evaluated for begging a project sprinting. This method conjointly helps the

event team to unharness new product versions into the market. The

implementation priority method helps the merchandise leader manage any

quite interruptions which will impact the project’s goals. This method

guarantees that the project’s tasks square measure one hundred pc completed

once initiated.

5.3.4 Roles and Responsibilities

The projected methodology involves four totally different roles and also the

responsibility of every role is represented as follows: Platform Owner:

Platform owner is that the one who is formally accountable for the product

that derive from a given platform. This person is accountable for shaping

quality, schedule and prices targets of the merchandise. He/she should

additionally produce and rank the merchandise backlog, opt for the goals for

the sprints, and review the merchandise with the stakeholders. Product

Leader: Product leader is accountable for the implementation, integration and

take a look at of the merchandise guaranteeing that quality, schedule, and

value targets outlined by the platform owner square measure met.

www.manaraa.com

81

He/she is additionally accountable for mediating between management and

development team additionally as taking note of progress and removes block

points. Feature Leader: Feature leader is accountable for managing, dominant

and coordinative scheme comes, pre integration comes, external suppliers that

contribute to an outlined set of options. The feature leader additionally tracks

the progress and standing of the feature development (deliverables,

integration and take a look at standing, defects, and alter requests) and reports

the standing to the merchandise leader. Development Team: the event team

which can accommodate programmers, architects, and testers square measure

accountable for functioning on the merchandise development.

They need the authority to form any selections, do no matter is important to

try and do (according to the project’s guidelines), and raise any block points

to be removed. If the merchandise to be developed is little, i.e. it\’s composed

of few elements (less than fifty KLOC) and doesn’t need different

development groups to implement the merchandise’s functionalities then one

product leader and also the development team square measure enough for the

product development. On the opposite hand, if the merchandise consists by

many elements (more than fifty KLOC) and needs different development

groups to implement the product’s functionalities then the Feature Leader role

should be concerned within the processes. During this context, one product

leader needs feature leaders to manage, management and coordinate

components’ comes. Therefore, for medium and bigger comes, one product

leader and several other feature leaders and development groups could also be

concerned within the processes.

www.manaraa.com

82

5.3.5 Processes Lifecycle

The projected agile methodology consists of 5 phases:

 Exploration

 Planning

 Development

 Release

 Maintenance.

With better sections to explore, there are certain necessities which could

primarily be held for unleashing and manage all the enclosed necessities for

the merchandise to backlog and own the platform.

 The estimate that one wants with no item larger than three person-days of

effort. During this section, the event team identifies the platform and

application constraints and estimates the system’s metrics supported the

merchandise backlog things. With this info at hand, the event team is able to

ready to outline the system platform which will be wont to develop the

merchandise within the next phases. Within the coming up with section, the

platform owner and customers establish a better estimate for the

decomposition of the sprint tasks into many other backlogs which could take

the form of different styles as well as prototypes. One needs to clarify all the

necessities which could help in managing the different teams to help them

clarify the important needs of a system.

 Within the development section, the team members implement new

functionalities and enhance the system supported the things of the sprint

backlog. The daily conferences are command at identical time and place

www.manaraa.com

83

with the aim of observance and adapting the activities to supply the specified

outcomes.

 At the top of the every iteration, major units are additionally to improve the

sections which would be able to manage all the software which could

maintain a place which has a better place to be used in. Throughout this

section, it always involves the major identification of errors which is able to

improve the different services of the customer, thereby, unleashing all the

important changes which could deliver and aim for the required

documentation. This section aims to deliver the discharge product and

required documentation to the client. the upkeep section might also need

additional sprints so as to implement new options, improvement and bug

fixes raised within the unleash section. Consecutive subsections describe

solely a set of processes of the projected methodology that focuses on

achieving the aims of the embedded management systems.

www.manaraa.com

84

6 Chapters Six

Discussions and Conclusions

6.1 Discussion

This study mainly addresses the major components of the engineering studies

namely:

 Software engineering

 Agile development

 Embedded system

The study has given a chance to come over all the solution and usage of the

agile methods which provide better solutions to the researches. The chapters

are mainly for the software engineering which could help in modeling the

entire major difference and trying to figure out all the advantages which will

have a major impact on the pictures of the embedded systems and which look

forward for the systems operating in real time operating systems (RQ1).

After that we discussed all important issues for embedded system as (trends,

design issues, development tool, real-time system), as (RQ2) , there is a

proposal for mapping all the embedded systems which will have an impact on

the process of the software and one is able to know all the methods related to

different agile methods development of embedded systems (RQ3). We

proposed all challenges which have a successful reach to all the development

in the software as well as implementing all those optimization studies which

lead to development too as (complexity, optimizations, interdependency,

verification and tools) then studied the impact and solution properties for each

challenges (RQ4).

www.manaraa.com

85

 After that we pointed for how well agile methods fit embedded systems.

Certain proposals are there for the different aspects of agile which could

benefit with the better system (RQ5) and ne needs to develop different

methodologies for the same to enhance a stringent approach for different

constraints on the hardware (RQ6).

In our thesis, we have been able to manage and analyze how the different

method of agile are able to be implemented in the embedded software and

systems (RQ3) which are found in the diversified methods as well as different

developments. One needs to mainly emphasize on those points which could

lead to a better characterization also with different viewpoints.

The process of beneficiation (RQ4) has been mainly pointed which could

guide all the characteristics for embedded system which would help in

measuring all the important beneficiaries in the process with different agile

process schedules. There are different multiple development which have been

proposed to suit and manage the constraints leading to the embedded domains

which have their different ideas for scaling the embedded systems and the

methods of the agile approach. The third research question was whether the

agile methods are suitable for the development of embedded systems and

embedded software. For example (Ronkainen & Abrahamsson, 2003) lay out

requirements which could be addresses and are under the major development

of the product which would substantially help in differing with what the agile

products are originally about.

There is a substantial change which is targeted to bring a major change in the

development, leading to the target which mainly needs to meet the demands

where the development and the requirements were to point all the

www.manaraa.com

86

embedded systems and target towards a support which would enhance the

different roles for better up gradation, confronting and pointing to all those

characteristics which are able to support all the important architecture and also

the different up-front designs. The requirements of the techniques are mainly

to manage the different amount which is able to document and specify that the

requirement s is important to manage all the documentation as well as

architecture.

 For agile methods that need to be addressed when used in embedded product

development. The characteristics of embedded product substantially differ

from what agile was originally targeted for. Meeting real-time requirements

of embedded systems is pointed out to be the most important difference that

new agile methods should be able to support. In embedded systems, the major

confront comes when the designs are avoided and lead to finding better

techniques which could roll into the account and lead towards a better and

suitable amount of documentation and specification. Furthermore, it is pointed

out by Ronkainen and Abrahamsson that top level documentation is important

as there are different stakeholders who are indulged in the working and the

coordination of various research methodologies. The main view is to analyze

the support which is given for a better development of the product which could

embed and lead to the major support by (Drobk, Noftz, & Raghu, 2004), (Gul,

Sekerci, Yücetürk, & Yildirim, 2005). In (Punkka, 2013) a document-driven

development approach is proposed where the major importance and focus is

on the real time systems which could outline and shine over the major and

effect sharing of information, thereby, realizing that there is a need to maintain

the coherent ideas which would be able to solve all the problems.

www.manaraa.com

87

Our thesis has been achieved with better goals and objectives which are able

to solve and minimize the problems statement questions, gaining a better

coordination and relationship between the processes of better methods for

Agile. The inputs are very helpful to analyze what is better for pointing

towards changes and using all agile methods in embedded system and pointed

of the Agile Development Methodology Applied to Embedded Control

Software under Stringent Hardware Constraints.

6.2 Future Work and Recommendations

Embedded software development is generally going to remain always

challenging domain where there are going to be assured developments which

could lead to the different technologies and methodological approaches. One

has to yield a better benefit which would sustain a development and benefit

from the different approach which is certain to bring success in all the

upcoming years to develop and manage all the success in the adoption for the

better designing process. It is important to develop the different process of the

software which has a major effect on the adoption on the agile methods

leading to a contextual approach and development of systems namely in the:

 technical issues(requirements, and testing);

Organizational issues (process tailoring, knowledge sharing & transfer,

culture change, and support infrastructure development).

www.manaraa.com

88

7 References

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New

directions on agile methods : acomparative analysis . international conference

on software engineering 25th (pp. 244-254). IEEE.

Apvrille, L., & Roudier, Y. (2014). towards the model- driven engineering

ofsecure safe embedded systems . GraMSc , 15-30.

Baynes, K., Collins, C., Fiterman, E., Ganesh, B., Kohout, P., Smit, C., et al.

(2001). the performance and energy consumption of three embedded real-time

operating systems. (pp. 203-210). in proceeding of the 2001 international

conference of compilers architecture and analysis for embedded systems

ACM.

Caudrado, J. S., Canovaslzqierdo, J. L., & Molina, J. G. (2014). applying

model- drivern engineering in small software interprises. science of computer

programming , 89, 176-198.

Chhya, A. S. (2008). A new process model for embedded systems control for

automotive industry . proceeding of the 2008 international arab conference

on information technology , (pp. 16-18). Tunisia .

Coplien, J., & Harrison, N. (2005). organizational patterns of agile software

development. 171. Upper Saddle River: Pearson Prentice Hall.

Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., et al.

(2008). An agile development methodology appliued to embedded

controlsoftware under stringent hardeware constraint. ACM SIGSOFT

software engineering notes , 33 (1), 5.

Crnkovic, I., & Larsson, M. H. (2002). building reliable component-based

software system. upper saddle riverpper : prentic Hall.

Dabney, J. (2004). return on investment for independent verification and

validation-phase 2B final reort. NASA.

www.manaraa.com

89

Dahlby, D. (2004). Applying agile methods to embedded systems

development. Embedded Software Design Resources , 41 (2004): 1014123.

Deng, D. (2014). Reliable Embedded Systems Development. master thesis .

university of calgary, department of electrical and computer engineering.

Douglass, B. P. (1997). Real-time UML: developing efficient objects for

embedded systems. Addison-Wesley Longman Publishing Co., Inc..

Drobk, J., Noftz, D., & Raghu, R. (2004). Piloting XP on Four Mission-

Critical Projects. IEEE Software , 23 (6), 70-75.

Dyba, T., & Dingsoyr, T. (2008). Empirical Studies of agile software

development: systematic review. information and software technology , 50 (9-

10), 833-859.

Eklund, U., & etal. (2014). Industrial challenges of scaling agile in mass-

produced embedded systems Agile Methods.Large-Scale Development,

Refactoring, Testing, and Estimation. Springer International Publishing..

Eklund, U., Olsson, H. H., & Strom, N. J. (2014). industrial challenges of

scaling agile in mass-product embedded systems. (pp. 30-42). springer

international publishing.

El-far, I. K., & Whittaker, J. A. (2001). model-based software testing .

Encyclopedia on software engineering Wailey.

Fernandes, J. M., & Machado, J. R. (2007). teaching embedded systems in

systems engineering in a software oriented computing degree. 37th

ASEE/IEEE frontiers in education research, (pp. 27-36).

Francia, G. A. (2001). Embedded systems programming. journal of

computing science in colleges , 17 (2), 217-223.

Francisco Assis M. do Nascimento, M. F. (2006). ModES:Embedded Systems

Design Methodology and Tools based on MDE. (pp. 67-76). Brazil: 07

proceedings of the fourth international workshop on Model-Based

methodologies for pervasive and embedded software.

www.manaraa.com

90

Gomaa, H. (2008). model-based software design of real-time embedded

systems. IJSE , 1 (1), 19-41.

Goswami, A., & Bezboruah, T. (2009). Design of an Embedded System for

Monitoring and Controlling Temperature and Light. International Journal of

Electronics Engineering Research , 1 (1), 27-36.

Gul, E., Sekerci, T., Yücetürk, A., & Yildirim, C. (2005). Using XP in

Telecommunication SoftwareDevelopment. International Conference on

Software Engineering Advances (pp. 258–263.). The Third, Sliema, Malta.

Junior, M., Neto, N., Maciel, S., Lima, P., & Rib, R. (2006). Analyzing

software performance and energy consumption of embedded systems by

probabilistic modeling: An approach based on coloured petri nets. In Petri

Nets and Other Models of Concurrency-ICATPN (pp. 261-281). Springer

Berlin Heidelberg.

Kaisti, M. R. (2013). Agile methods for embedded systems development - a

literature review and a mapping study. EURASIP Journal on Embedded

Systems 2013 , 1 (15).

Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Konnola, K., Makila,

T., et al. (2013). agile methods for embedded systems development-a

literature review and amapping study. EURASIP journal on embedded

systems (1), 1-16.

Kalinsky, D. (1999). "A survey of task schedulers". In Embedded systems

conference. San Jose CA.

Khanjani, A. (2011). comparison between four software engineering

approaches: component based software engineering, agile methods, aspect

oriented and mash-up. international journal of advances in computer science

, 2 (4), 20-26.

Koopman, P. (2006). Embedded system design issues (the rest of the story).

Computer Design: VLSI in Computers and Processors (pp. 310-317).

ICCD'96. Proceedings., 1996 IEEE International Conference.

www.manaraa.com

91

Koptez, H. (2000). Software Engineering for Real-Time:A Roadmap. IEEE

international conference on factory automation (pp. 1557-1565). Austria:

IEEE.

Laanti, P. K. (2006). How to steer an embedded software project: Tactics for

scaling agile softrware processs moels . IJAM , 9 (1), 59-77.

Larman, C. (2003). Agile and iterative development: A manager guide.

Boston: Addison Wesley.

Lindvall, M., Muthing, D., Dagnino, A., Walliam, C., Kiefer, D., &

Stupperich, M. (2004). Agile software development in large organizations.

Computer , 37 (12), 26-34.

media design automation Roadmap, 2205.Version 5.

mosterman, P. J. (2006). network embedded systems. Punkka: proceeding of

beyond SCADA: cyber physical systems meeting pittsburgh.

Munassar, N. M., & Govardhan, A. (2010). A comparision between five

models of software engineering. IJCS,93, Newness, Butterworth-

Heinemann,Boston MA.

Noergaard, T. (2012). Embedded systems architecture: a comprehensive

guide for engineers and programmers. Newnes.

Poulhies, M., Pulou, J., Rippert, C., & Sifakis, J. (2007). A methodology and

supporting Tools for the development of component-based embedded

systems. in composition of embedded systems.scientific and industrial issues

, (pp. 75-96). springer berlin heidelberg.

Punkka, T. (2013). Agile hardware and co-design.

PWC. (2013). Accelerating embedded software development via agile

techniques;The nine strategies that lead to successful embedded software

development. Technology institute.

Rajawat, P., & Rajendra, P. (2011). A servuey of embedded software profiling

methodologies. international journals of embedded systems and applications

, 1 (2), 19-40.

www.manaraa.com

92

Ronkainen, J., & Abrahamsson, P. (2003). software development under

stringent hardware constrait: do agile methode have a chance in . 4th

International Conference on Extreme Programming and Agile Processes in

Software Engineering, (pp. 73–79).

Royce, W. (1970). managing the development of large software systems:

concept and techniques . Los Angeles: in proceeding of the IEEE westcon.

Sangiovanni-Vincentelli, A., & Martin, G. (2010). Platform-based design and

software design methodology for embedded systems. IEEE Design & Test of

Computers , 18 (6), 23-33.

Schwaber, K., & Mike, B. (2002). gilè Software Development with Scrum.

First Edition, Series in Agile Software Development, Prentice Hall.

Sha, L., Abdelzaher, T., Arzen, K. E., Cervin, A., Baker, T., Burns, A., et al.

(2004). Real time scheduling theory: A historical perespective. Real-time

systems , 28 (2-3), 101-155.

Shih, W. Y. (2014). Embedded System Software Testing Process and Criteria:

Application on Consumer Products of Networking and Communication

Industry..

Sommerville, I. (2004). Software engineering. Spirit Consortium .

Srinivasan, J., Dobrin, R., & Lundvist, K. (2009). State of the Art'in Using

Agile Methods for Embedded Systems Development. Computer Software and

Applications Conference (pp. Vol. 2, pp. 522-527). 33rd Annual IEEE

International.

Stepner, D., Rajan, N., & Hui, D. (1999). Embedded application design using

a real-time. design automation conferece IEEE, 36, pp. 151-156.

Suomi, S. (2014). Empirical study of agile software development: a

systematic review . In T. Dyba, & T. Dingsoyer, Project Management Tools

in Agile Embedded Systems Development. (pp. 9-10). Technol.

Szyperski, C. (2002). Component Software: Beyond object oriented

programming . New York: press and addison wesley.

www.manaraa.com

93

Thomas, S. W., Adam, B., Hassan, A. E., & Blostien, D. (2014). studying

software evolution using topics models. science of computer programming ,

80, 457-479.

Thüm, T., Kastner, C., Bendun, F., Meinicke, J., Saake, J., & Leich, T.

(2014). Featureide: An extensible framework for feature-oriented software

development. Science of Computer Programming , 79, 70-85.

Verma, J., Bansal, S., & Pandey, H. (2014). Develop framework for

selecting best software development methodology. international journal of

science and engineering research , 5 (4).

Vijay, S. (2001). A Study of Real-Time Embedded Software Systems and

Real-time Operating Systems. master thesis . Mumbai: Indian Institute of

Technology.

www.agilemanifesto.org

West, D., Grant, T., Gerush, M., & Disilva, D. (2010). agile development:

Mainstream adoption has change agility. forrester research , 2, 41.

